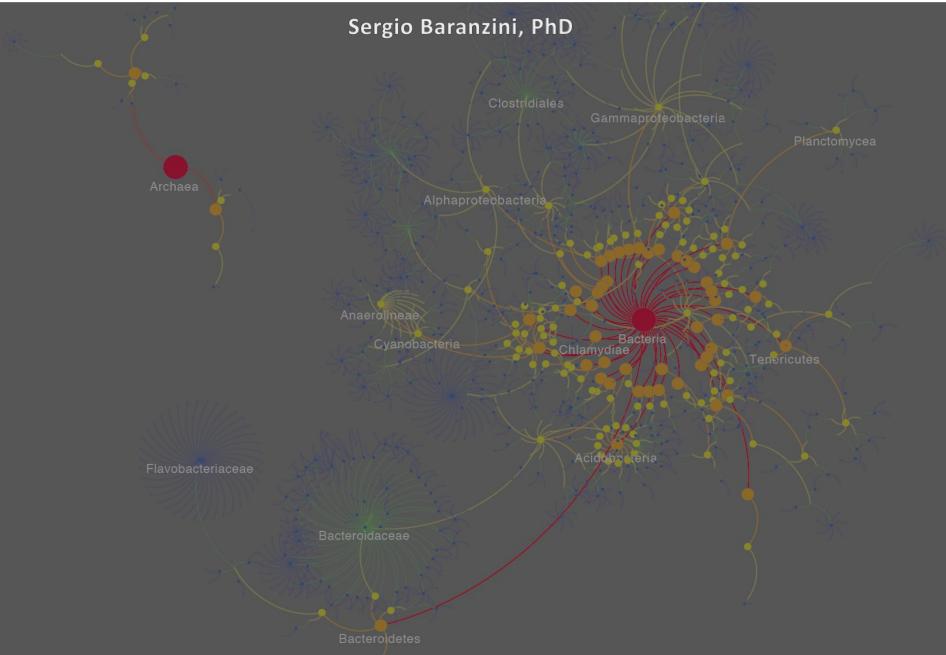
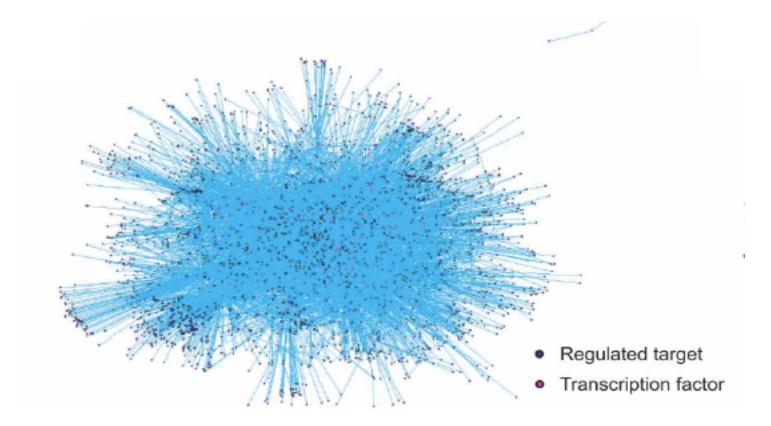
Network biology



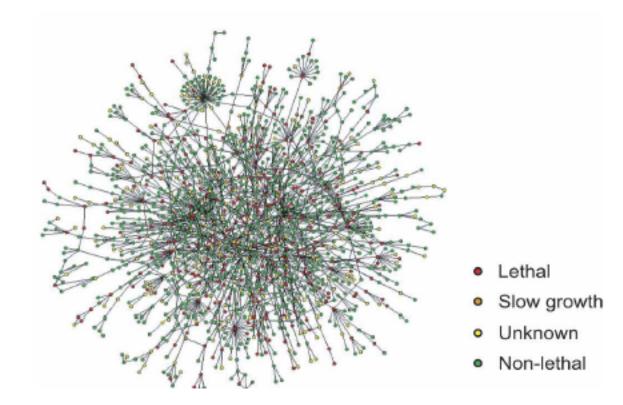
Examples of network biology

- Genetic
- Co-expression
- Protein interaction
- Metabolic
- TF binding
- Phosphorylation

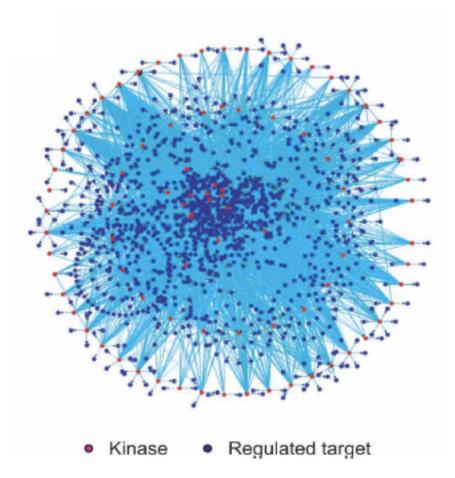
TF binding net



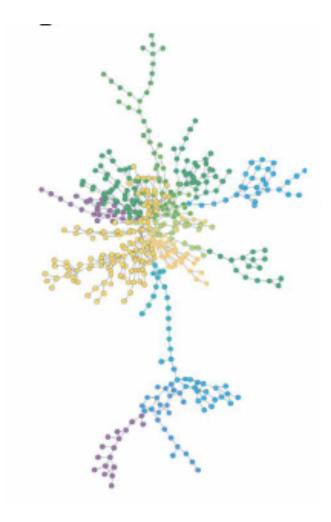
Protein interaction net



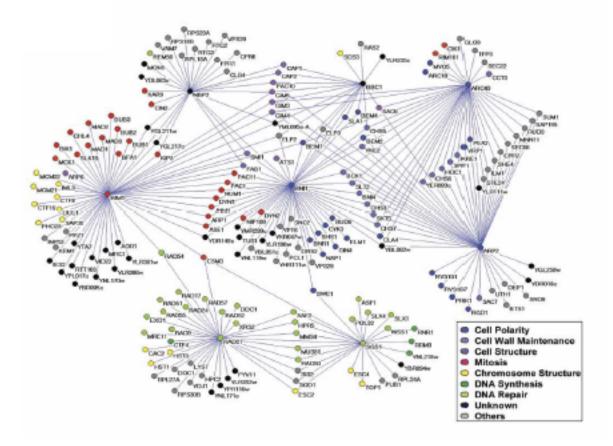
Phosphorylation net



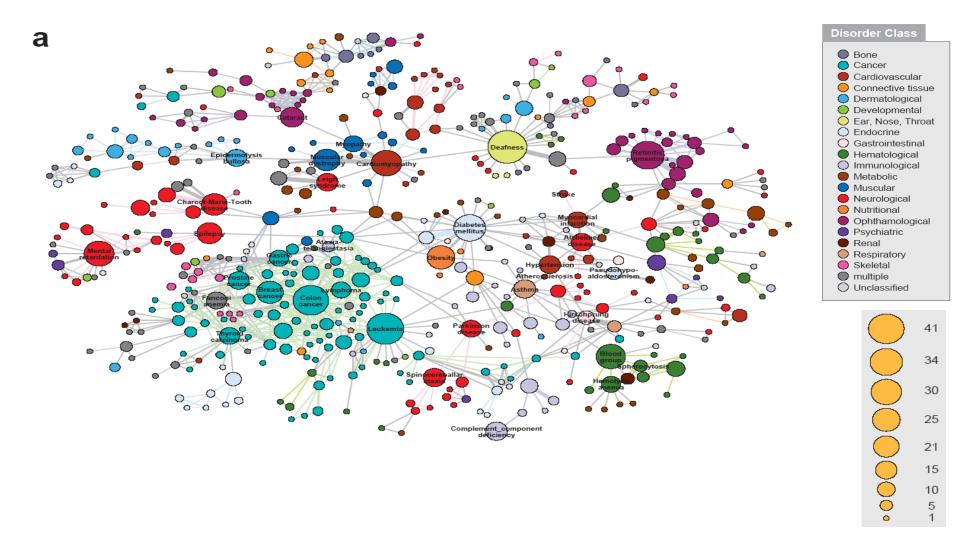
Metabolic net



Genetic (synthetic lethality)



Bi-partite nets: The diseasome



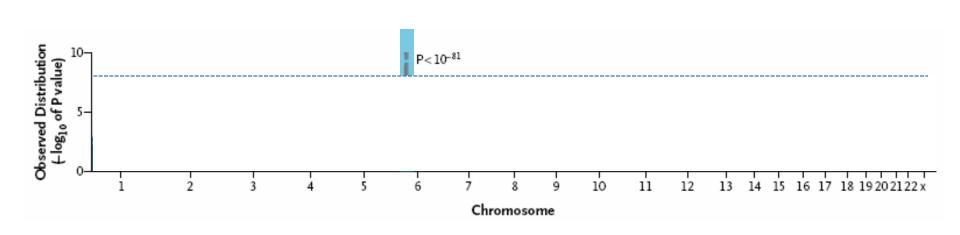
Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90

Other bi-partite nets

- Drug target net (Yildirim et al. Nat Biotechnol. 2007 Oct;25(10):1119-26.)
- Drug interactions (Campillos et al. Science.
 2008 Jul 11;321(5886):263-6)
- Drug repositioning (Keiser et al. Nature. 2009 Nov 12; 462(7270):175-81.)
- Disease-symptoms (Zhou et al. Nat Commun. 2014 Jun 26;5:4212.)

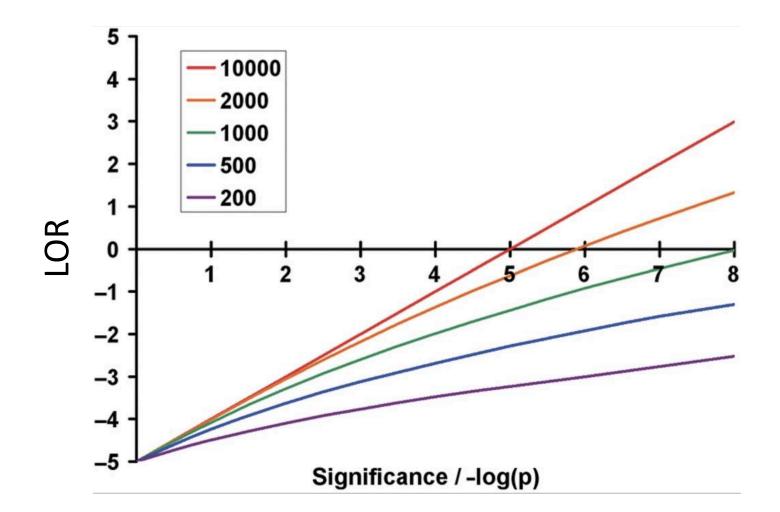
First GWAS in multiple sclerosis (MS)

1000 cases

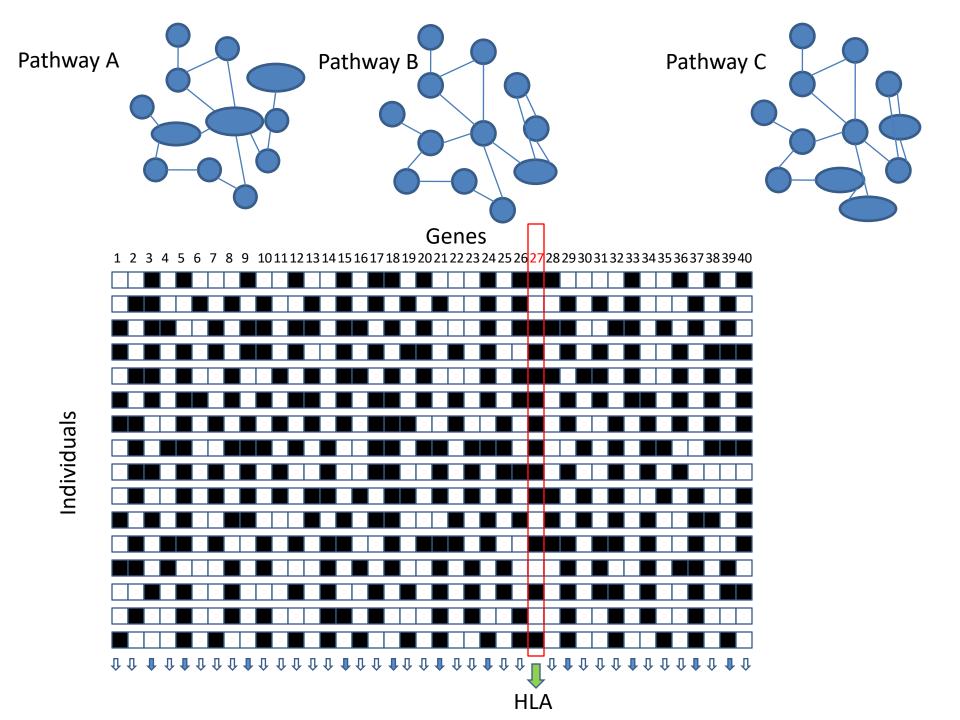


The problem

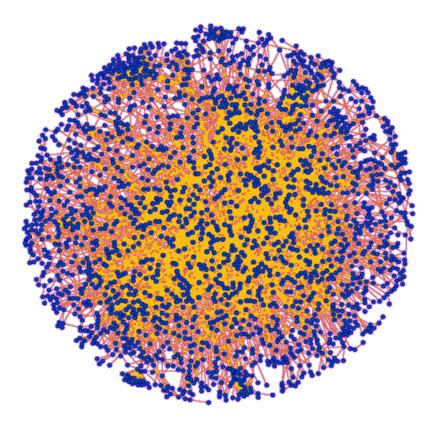
Posterior odds of GWAS associations



Sawcer SJ, Brain. 2008



Hypothesis: Overlapping statistical evidence of association with physical evidence of interaction should discover modestly associated genes



Human protein interaction network

ARTICLE

Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls

International Multiple Sclerosis Genetics Consortium^{1,*}

Multiple sclerosis (MS) is an inflammatory CNS disease with a substantial genetic component, originally mapped to only the human leukocyte antigen (HLA) region. In the last 5 years, a total of seven genome-wide association studies and one meta-analysis successfully identified 57 non-HLA susceptibility loci. Here, we merged nominal statistical evidence of association and physical evidence of interaction to conduct a protein-interaction-network-based pathway analysis (PINBPA) on two large genetic MS studies comprising a total of 15,317 cases and 29,529 controls. The distribution of nominally significant loci at the gene level matched the patterns of extended linkage disequilibrium in regions of interest. We found that products of genome-wide significantly associated genes are more likely to interact physically and belong to the same or related pathways. We next searched for subnetworks (modules) of genes (and their encoded proteins) enriched with nominally associated loci within each study and identified those modules in common between the two studies. We demonstrate that these modules are more likely to contain genes with bona fide susceptibility variants and, in addition, identify several high-confidence candidates (including *BCL10, CD48, REL, TRAF3*, and *TEC*). PINBPA is a powerful approach to gaining further insights into the biology of associated genes and to prioritizing candidates for subsequent genetic studies of complex traits.

Reading assignment

SCIENTIFIC REPORTS

OPEN Tissue Specificity of Human Disease Module

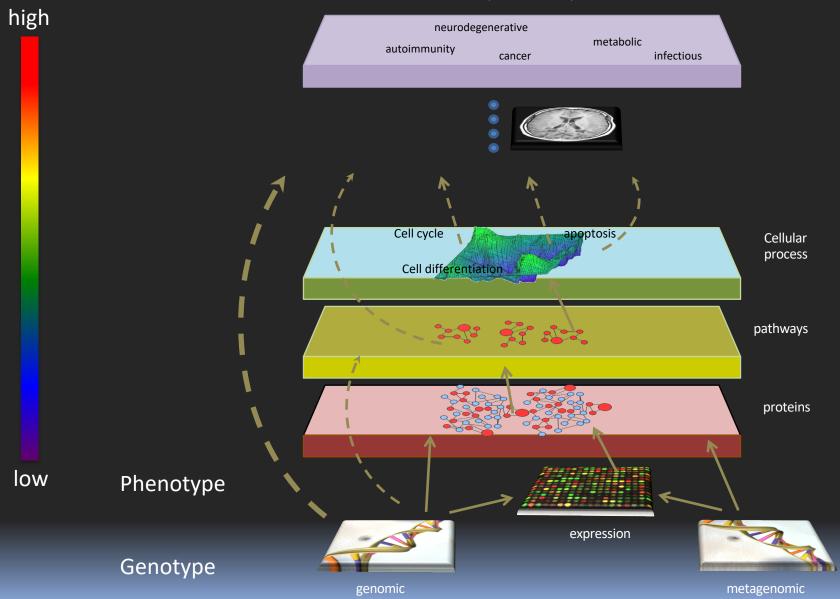
Maksim Kitsak^{1,2}, Amitabh Sharma^{1,2,3}, Jörg Menche^{1,2,4,5}, Emre Guney^{1,2,6}, Susan Dina Ghiassian^{1,2,7}, Joseph Loscalzo⁸ & Albert-László Barabási^{1,2,4,7,8,9}

Genes carrying mutations associated with genetic diseases are present in all human cells; yet, clinical manifestations of genetic diseases are usually highly tissue-specific. Although some disease genes are expressed only in selected tissues, the expression patterns of disease genes alone cannot explain the observed tissue specificity of human diseases. Here we hypothesize that for a disease to manifest itself in a particular tissue, a whole functional subnetwork of genes (disease module) needs to be expressed in that tissue. Driven by this hypothesis, we conducted a systematic study of the expression patterns of disease genes within the human interactome. We find that genes expressed in a specific tissue tend to be localized in the same neighborhood of the interactome. By contrast, genes expressed in different tissues are segregated in distinct network neighborhoods. Most important, we show that it is the integrity and the completeness of the expression of the disease module that determines disease manifestation in selected tissues. This approach allows us to construct a disease-tissue network that confirms known and predicts unexpected disease-tissue associations.

Received: 16 May 2016 Accepted: 20 September 2016 Published: 17 October 2016

Hierarchical organization of biological complexity

Physiological/pathological Process (health/disease)

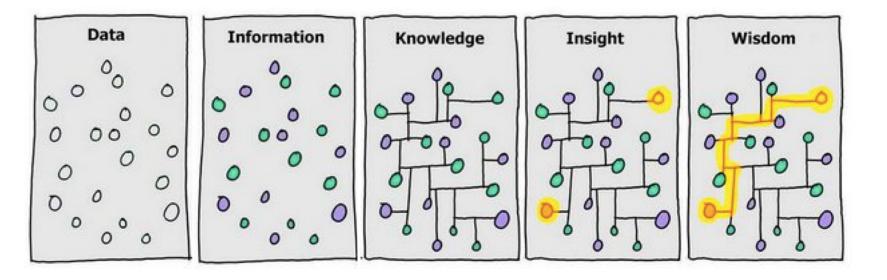


Information

Contextualized, categorized, calculated and condensed data

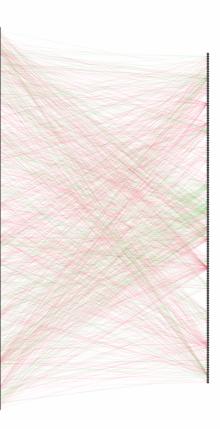
Data

Facts and figures which relay something specific, but which are not organized in any way



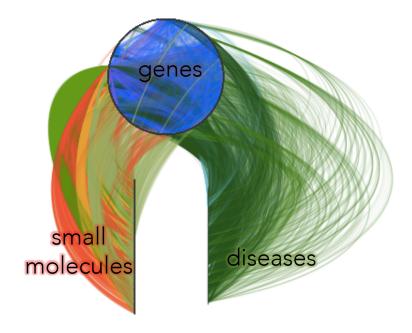
Imagine...

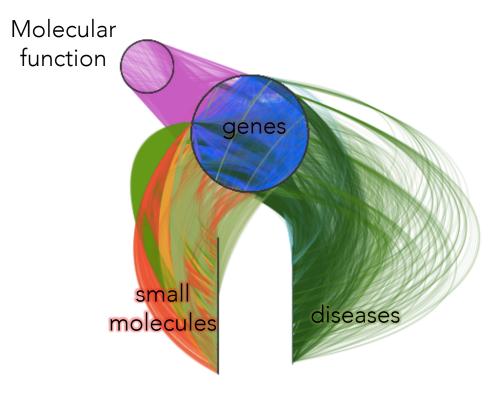
1,538 approved small molecule compounds

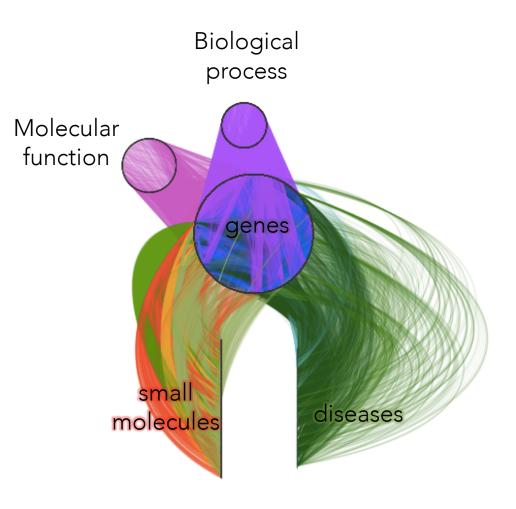


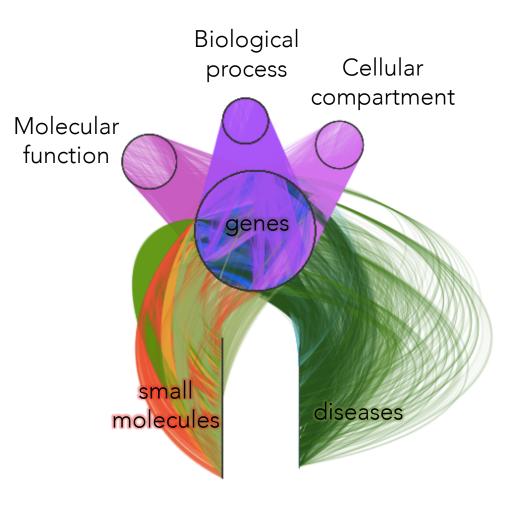
136 complex diseases

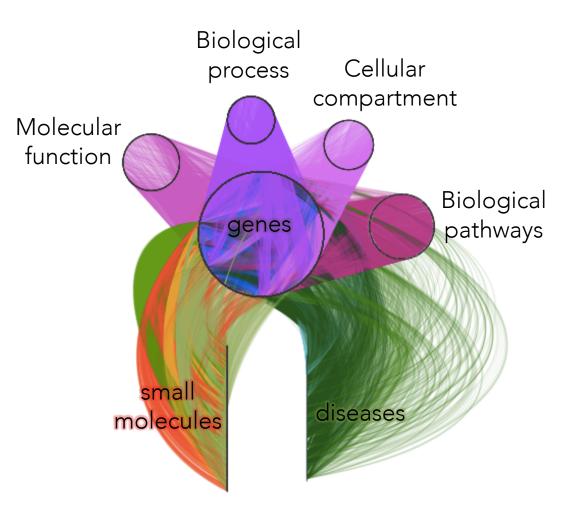
small molecules diseases

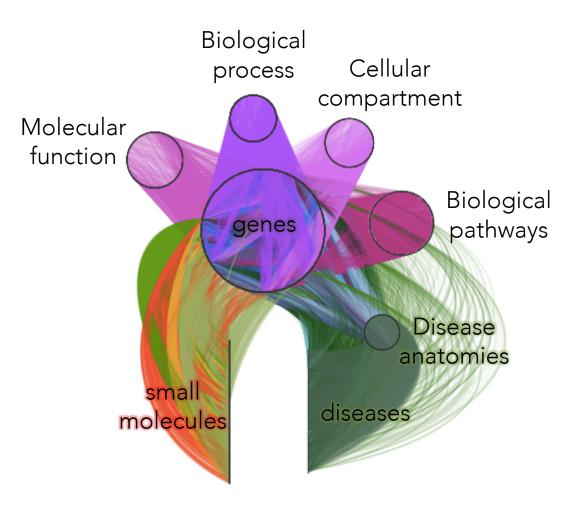


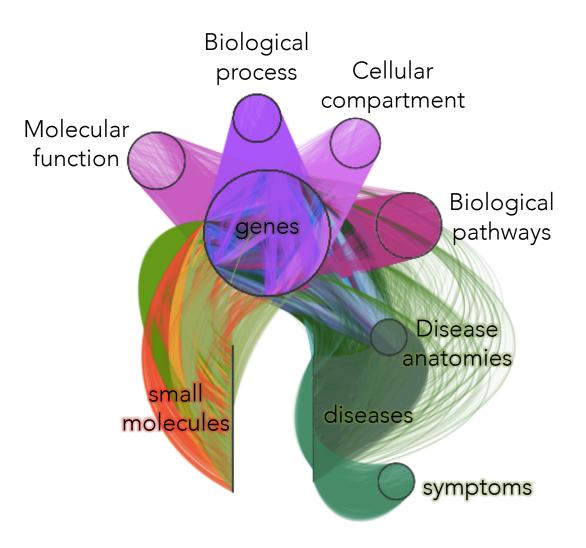


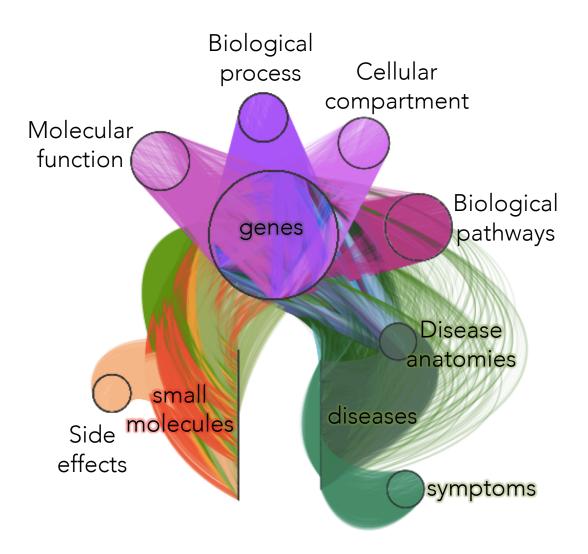


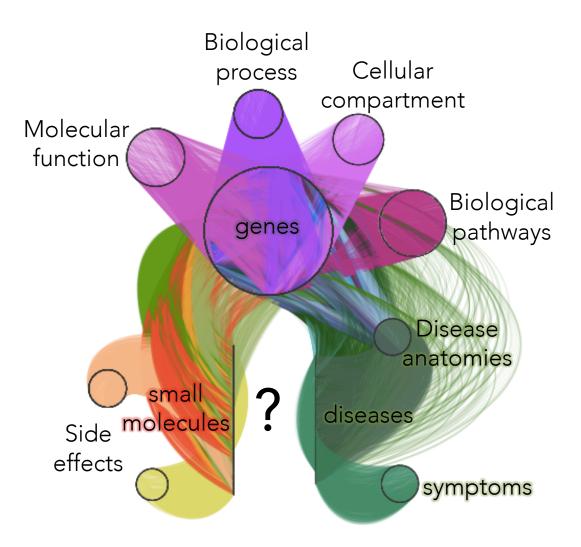












47,031 nodes (11 types) 2,250,197 relationships (24 types)

Hetionet v1.1 characteristics

11 node types

24 edge types

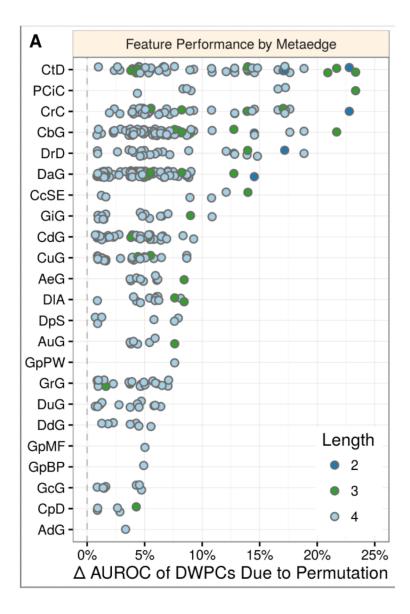
Metanode	Abbr	Nodes
Anatomy	А	402
Biological Process	BP	11,381
Cellular Component	CC	1,391
Compound	С	1,552
Disease	D	137
Gene	G	20,945
Molecular Function	MF	2,884
Pathway	PW	1,822
Pharmacologic Class	PC	345
Side Effect	SE	5,734
Symptom	S	438

metaedge	Abbr	Edges
Anatomy-downregulates-Gene	AdG	102,240
Anatomy-expresses-Gene	AeG	526,407
Anatomy-upregulates-Gene	AuG	97,848
Compound-binds-Gene	CbG	11,571
Compound-causes-Side Effect	CcSE	138,944
Compound-downregulates-Gene	CdG	21,102
Compound-palliates-Disease	СрD	390
Compound-resembles-Compound	CrC	6,486
Compound-treats-Disease	CtD	755
Compound-upregulates-Gene	CuG	18,756
Disease-associates-Gene	DaG	12,623
Disease-downregulates-Gene	DdG	7,623
Disease-localizes-Anatomy	DIA	3,602
Disease-presents-Symptom	DpS	3,357
Disease-resembles-Disease	DrD	543
Disease-upregulates-Gene	DuG	7,731
Gene-covaries-Gene	GcG	61,690
Gene-interacts-Gene	GiG	147,164
Gene-participates-Biological Process	GpBP	559,504
Gene-participates-Cellular Component	GpCC	73,566
Gene-participates-Molecular Function	GpMF	97,222
Gene-participates-Pathway	GpPW	84,372
Gene→regulates→Gene	Gr>G	265,672
Pharmacologic Class-includes-Compound	PCiC	1,029

Pipeline summary

- Created Hetionet v1.0 an integrative network with 2,250,197 relationships of 24 types.
- Extracted features from the network (to quantify the prevalence of specific path types between each compound and disease). 46.8M paths!
- Fitted regularized regression model (to translate from network-based features to a probability of treatment for a given compound-disease pair).
- Permuted the network (to reduce false positives)

Feature contribution

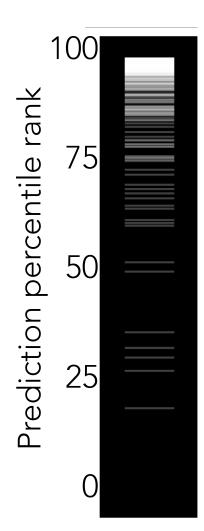


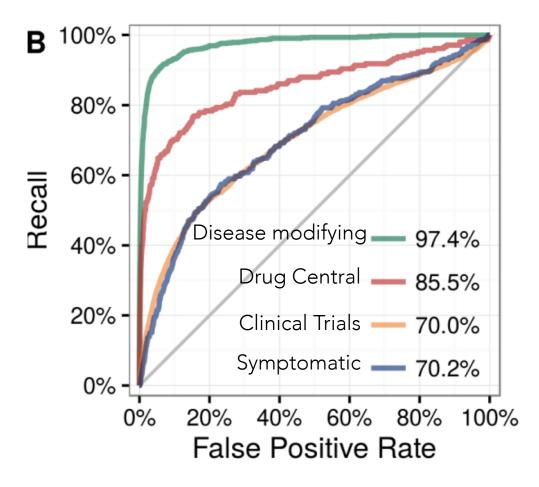
Top predictions

14	А	В	С	D	E	F	G	Н	1
1	compound_name	disease_name	category 👻	prediction 👻	compound_percentile 👻	disease_percentile 👻	prior_prob 💌	n_trials 👻	
2	Pamidronate	osteoporosis	DM	88.69%	100.00%	100.00%	3.89%	0	
3	Alendronate	osteoporosis	DM	88.50%	100.00%	99.93%	3.89%	68	
4	Risedronate	osteoporosis	DM	88.11%	100.00%	99.87%	3.89%	0	
5	Esomeprazole	Barrett's esophagus	DM	82.31%	100.00%	100.00%	0.23%	7	
6	Ibandronate	Paget's disease of bone		80.26%	100.00%	100.00%	0.72%	0	
7	Glyburide	type 2 diabetes mellitus	DM	79.96%	100.00%	100.00%	5.88%	26	
8	Omeprazole	Barrett's esophagus	DM	78.68%	100.00%	99.93%	0.23%	11	
9	Alendronate	Paget's disease of bone	DM	76.98%	99.26%	99.93%	1.49%	2	
10	Etidronic acid	Paget's disease of bone	DM	74.88%	100.00%	99.87%	1.49%	2	
11	Pamidronate	Paget's disease of bone	DM	72.96%	99.26%	99.80%	1.49%	0	
12	Furosemide	hypertension	DM	71.71%	100.00%	100.00%	28.33%	4	
13	Risedronate	Paget's disease of bone	DM	71.71%	99.26%	99.74%	1.49%	0	
14	Ibandronate	osteoporosis	DM	71.47%	99.26%	99.80%	1.92%	39	
15	Etidronic acid	osteoporosis	DM	68.64%	99.26%	99.74%	3.89%	15	
16	Bumetanide	hypertension	DM	68.42%	100.00%	99.93%	11.06%	0	
17	<u>Olsalazine</u>	Crohn's disease		66.53%	100.00%	100.00%	0.72%	0	
18	Aminophylline	asthma	DM	64.97%	100.00%	100.00%	10.43%	3	
19	Methotrexate	lung cancer	DM	61.48%	100.00%	100.00%	41.76%	0	
20	Paricalcitol	osteoporosis		60.35%	100.00%	99.67%	0.00%	0	
21	Topiramate	epilepsy syndrome	DM	60.27%	100.00%	100.00%	10.13%	35	
22	Ethotoin	epilepsy syndrome		58.85%	100.00%	99.93%	0.00%	0	
23	Losartan	hypertension	DM	57.33%	100.00%	99.87%	28.33%	79	

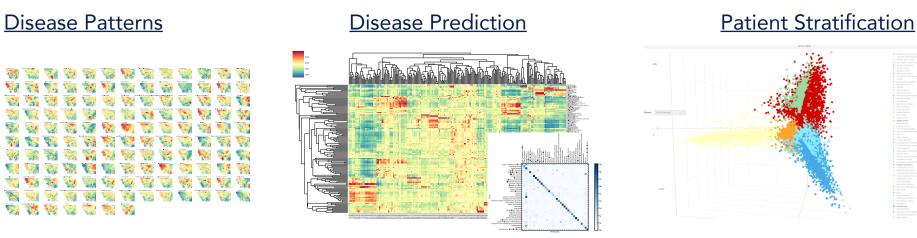
Between 30-300 fold increase over null!

Prediction Performance

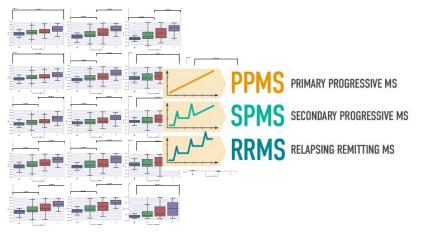




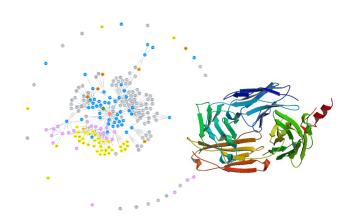
SPOKE Applications Coming Soon



Multiple Sclerosis Disease Course



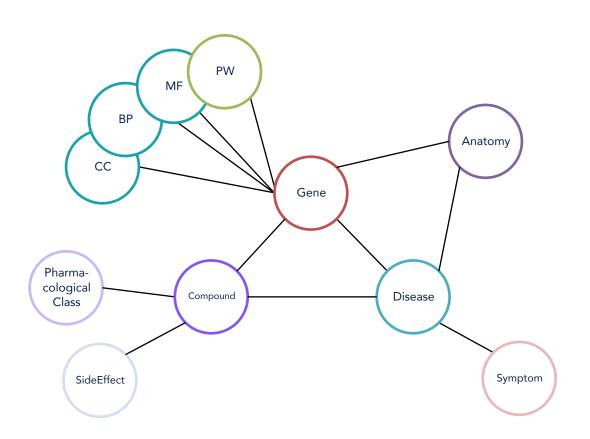
Drug Signatures



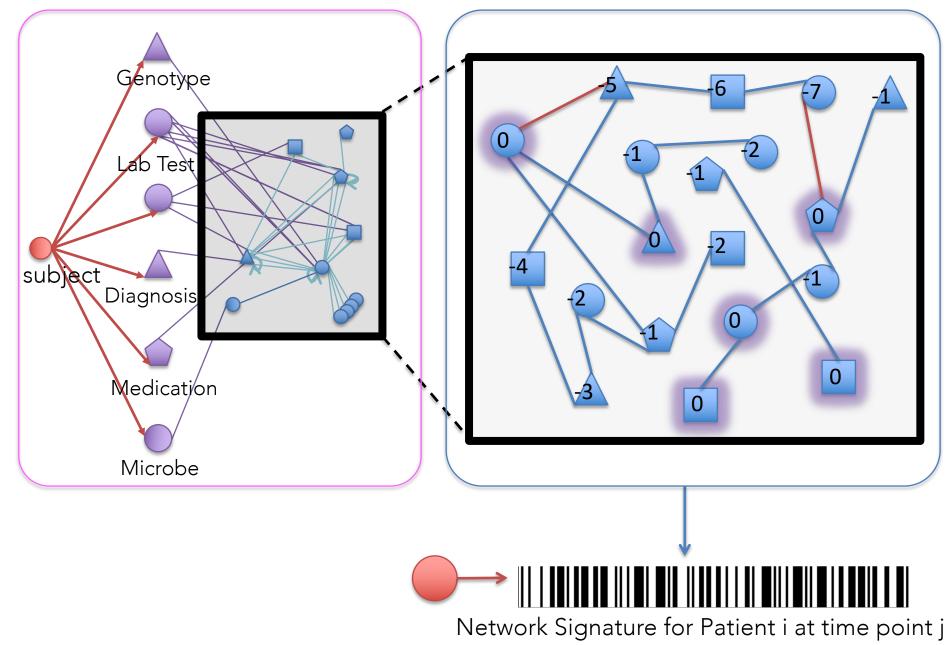
Hetionet -> SPOKE - Scalable PrecisiOn Medicine Knowledge Engine

Charlotte Nelson

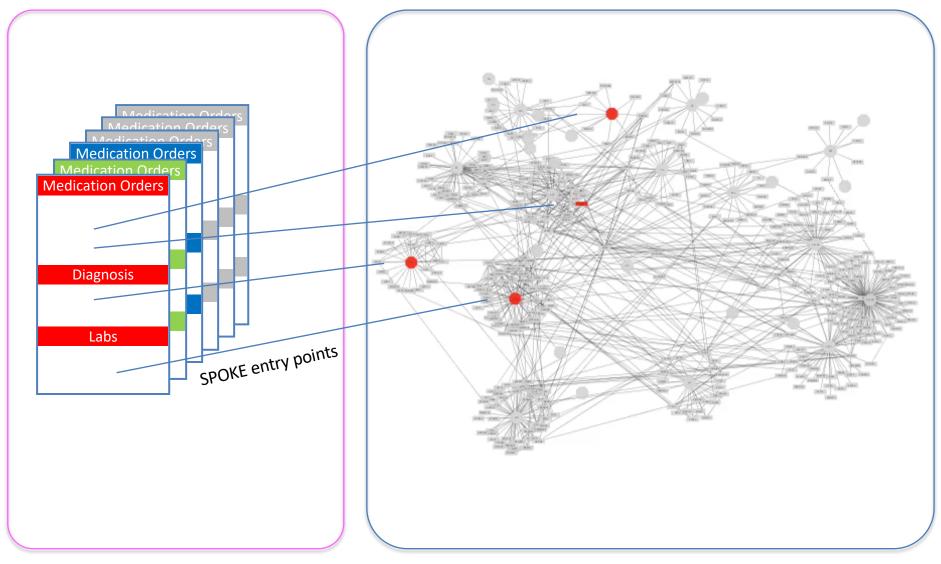
Krish Bharat

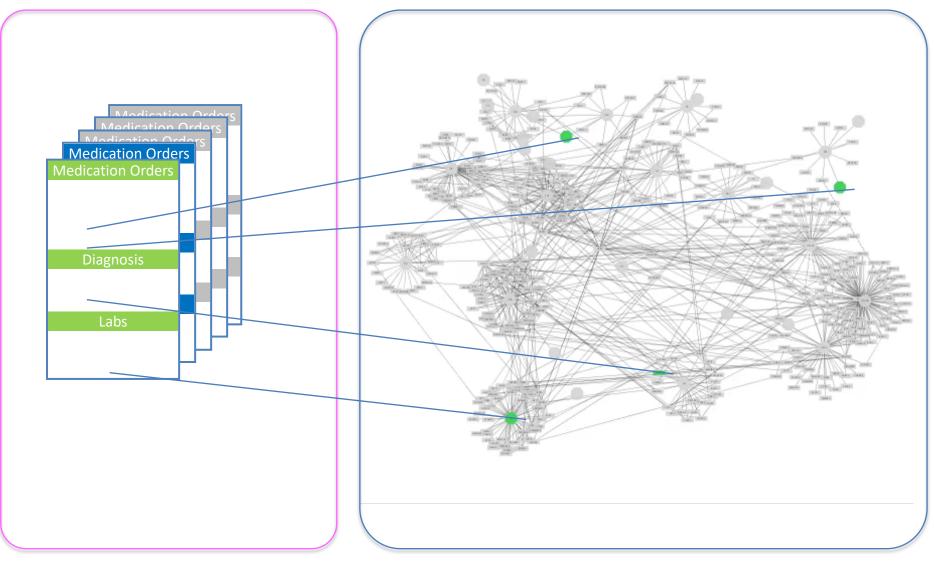


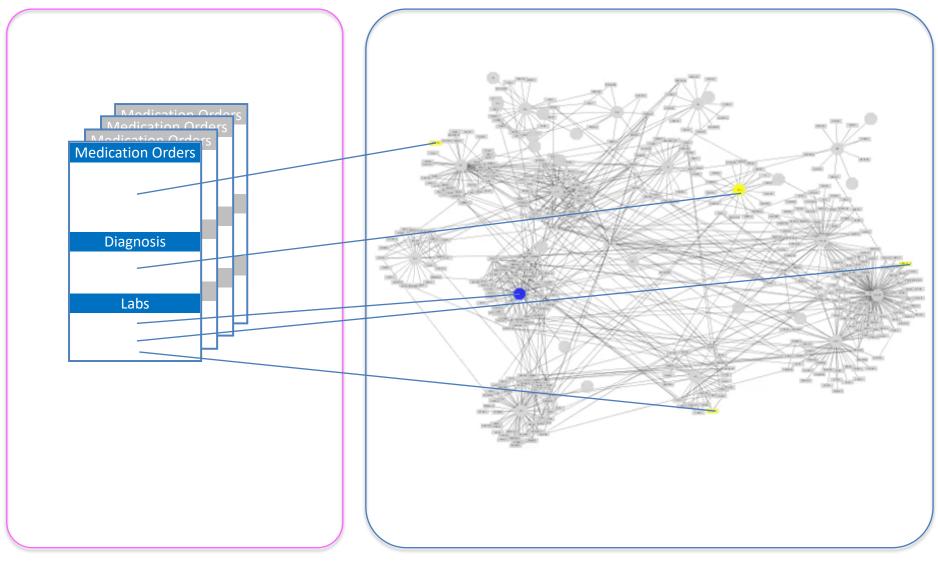
1,941,858 nodes (12 types) 2,464,273 relationships (26 types)

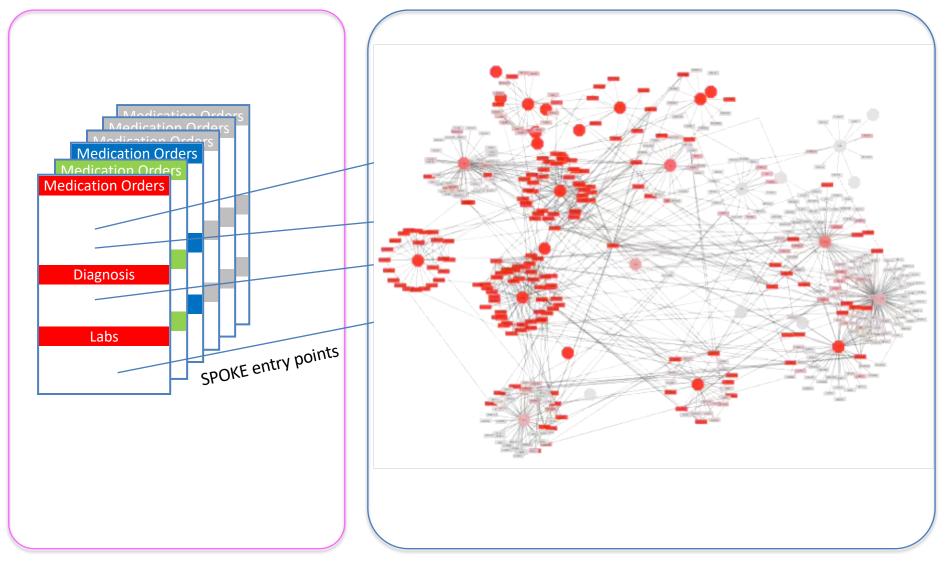


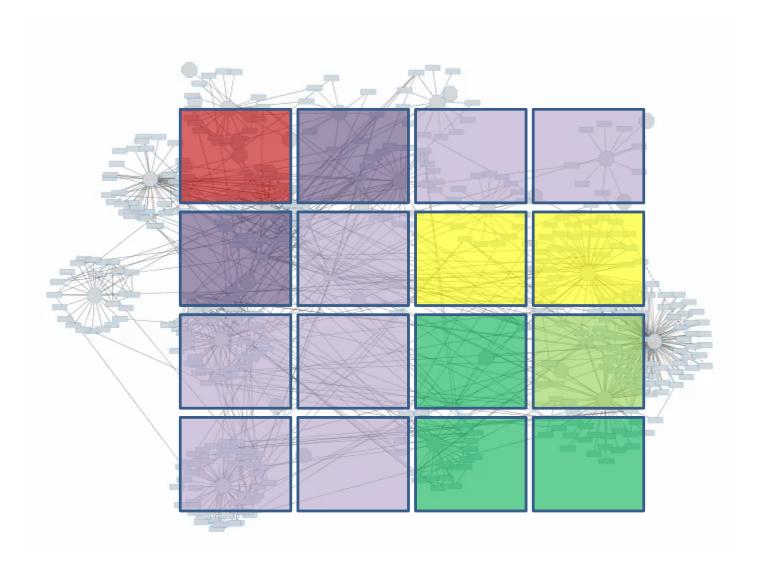
UCSF EHR (800k)

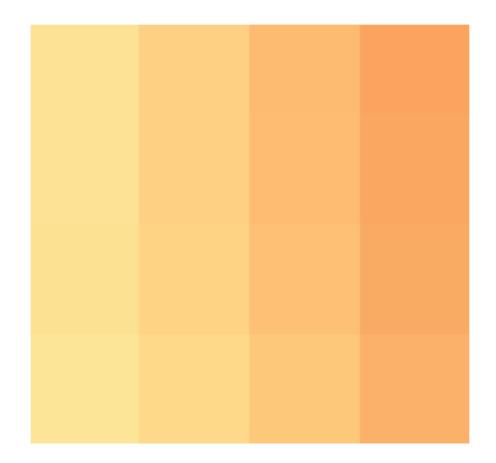






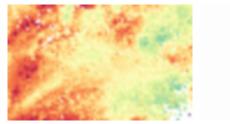






Most Similar Diseases to the Average PTSD Patient at UCSF

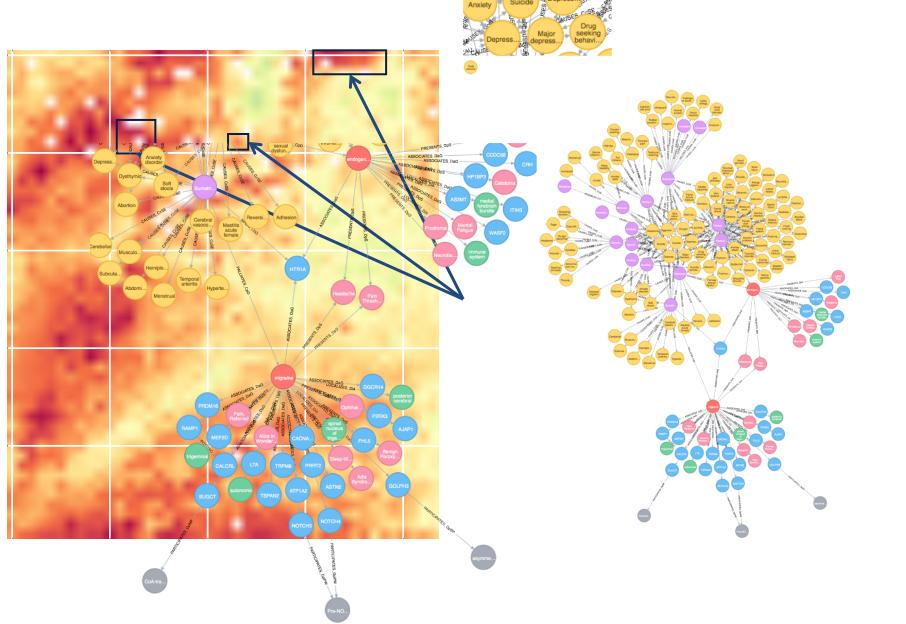
PTSD (n~4000)



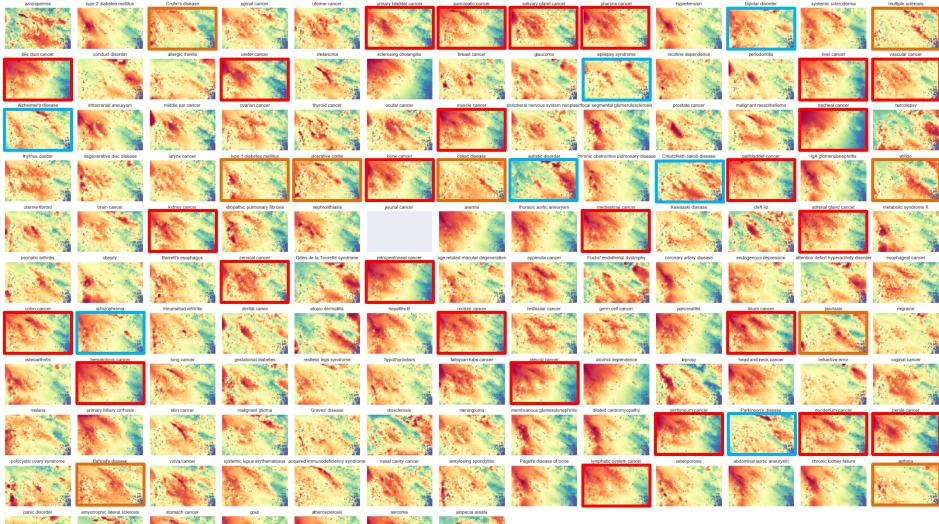
Pixels That are Significantly

& Unique to PTSD

9



137 diseases



Cytoscape Apps

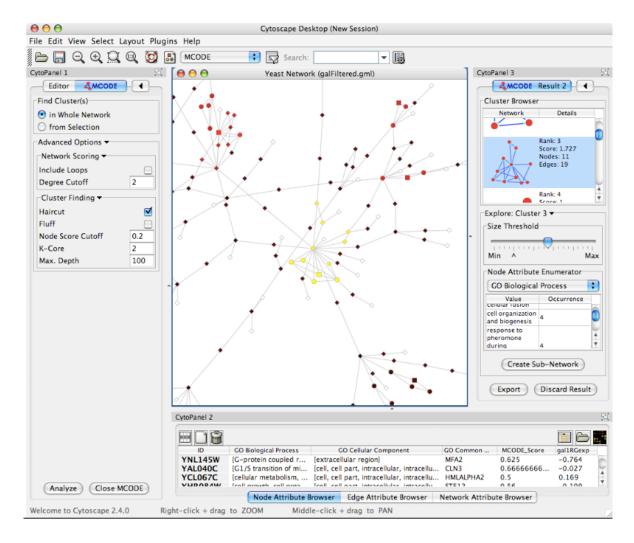
- jActive modules
- MCODE
- BINGO
- GeneMANIA
- PINBPA
- iCTNet

BINGO: Gene ontology analysis

00	BiNGO Settings
BiNGO settings	
Save settings as default	Help
Cluster name:	
test2	
Get Cluster from Network	⊠ Paste Genes from Text
26980 AT3G03770 At3g45640 AT4G33950 At5g01810 AT5G14210 AT5G63410	
	¥
Do you want to assess over- or u	1
Overrepresentation	Underrepresentation
Visualization	No Visualization
Select a statistical test:	
Hypergeometric test	•
Select a multiple testing correctio	n:
Benjamini & Hochberg False Discovery Rate (FDR) correction	
Choose a significance level:	
0.05	
Select the categories to be visualized:	
Overrepresented categories after correction	
Select reference set:	
Test cluster versus whole annotation	
Select ontology file:	
/Users/maere/Documents/go/gene_ontology.obo	
Select namespace:	
goslim_plant	\$
Select organism/annotation:	
/Users/maere/Documents/go/gene_association.tair	
Discard the following evidence codes:	
Charle have for anying Data	BINGO Data file i) 'maere/Documents/temp
Check box for saving Data Save	
(Start BiNGO	

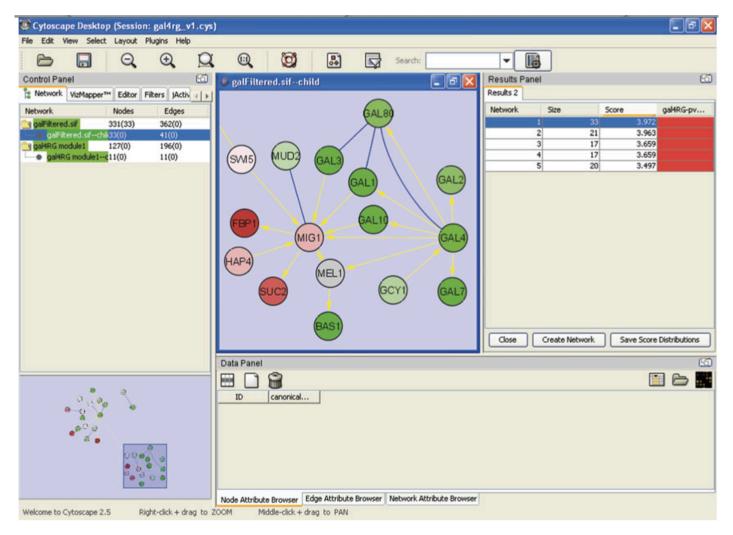
MCODE

(Clusters a given network based on topology to find densely connected regions)



jActive modules

Finds clusters where member nodes show significant changes in expression levels

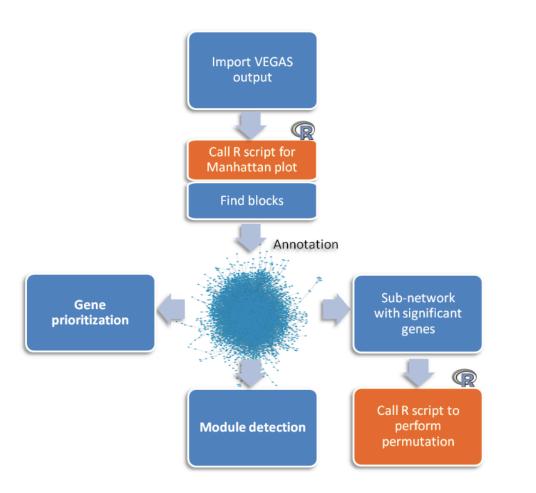


Imports interaction networks from public databases from a list of genes with their annotations and putative functions.



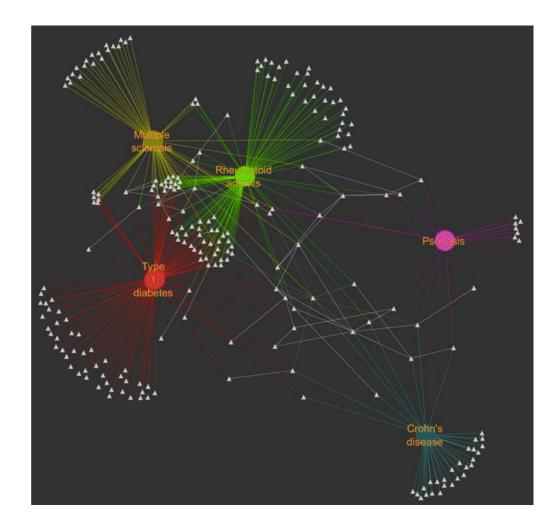
PINBPA

Protein-interaction-network-based Pathway Analysis of GWAS



iCTNet:

assembles human disease, tissue, gene and drug-target interactions



Reading assignment

SCIENTIFIC REPORTS

OPEN Tissue Specificity of Human Disease Module

Maksim Kitsak^{1,2}, Amitabh Sharma^{1,2,3}, Jörg Menche^{1,2,4,5}, Emre Guney^{1,2,6}, Susan Dina Ghiassian^{1,2,7}, Joseph Loscalzo⁸ & Albert-László Barabási^{1,2,4,7,8,9}

Genes carrying mutations associated with genetic diseases are present in all human cells; yet, clinical manifestations of genetic diseases are usually highly tissue-specific. Although some disease genes are expressed only in selected tissues, the expression patterns of disease genes alone cannot explain the observed tissue specificity of human diseases. Here we hypothesize that for a disease to manifest itself in a particular tissue, a whole functional subnetwork of genes (disease module) needs to be expressed in that tissue. Driven by this hypothesis, we conducted a systematic study of the expression patterns of disease genes within the human interactome. We find that genes expressed in a specific tissue tend to be localized in the same neighborhood of the interactome. By contrast, genes expressed in different tissues are segregated in distinct network neighborhoods. Most important, we show that it is the integrity and the completeness of the expression of the disease module that determines disease manifestation in selected tissues. This approach allows us to construct a disease-tissue network that confirms known and predicts unexpected disease-tissue associations.

Received: 16 May 2016 Accepted: 20 September 2016 Published: 17 October 2016

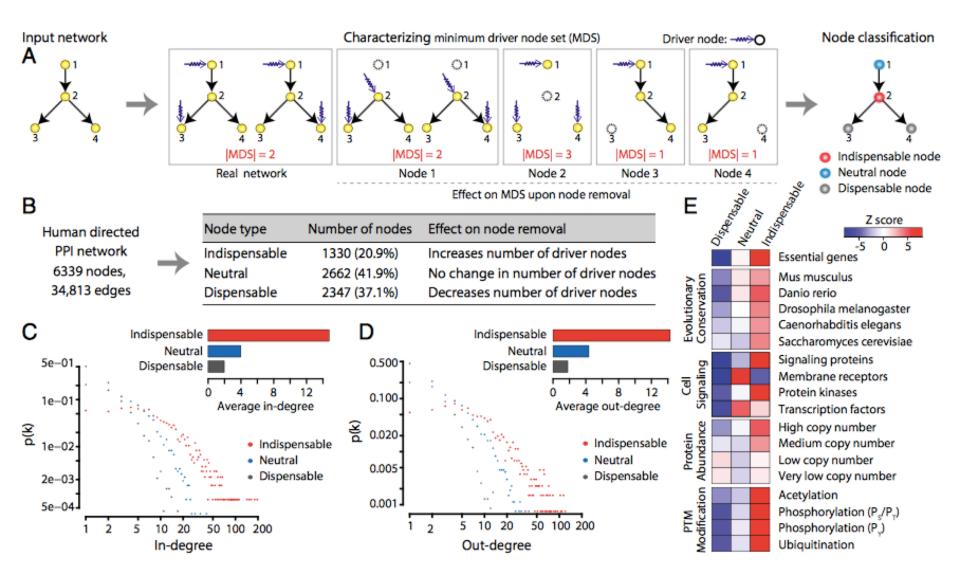
Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets

Arunachalam Vinayagam^{a,1}, Travis E. Gibson^b, Ho-Joon Lee^{c,2}, Bahar Yilmazel^{d,e}, Charles Roesel^{d,e,3}, Yanhui Hu^{a,d}, Young Kwon^a, Amitabh Sharma^{b,f,g}, Yang-Yu Liu^{b,f,g,1}, Norbert Perrimon^{a,h,1}, and Albert-László Barabási^{f,g,1}

PNAS

^aDepartment of Genetics, Harvard Medical School, Boston, MA 02115; ^bChanning Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; ^cDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115; ^dDrosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115; ^eBioinformatics Program, Northeastern University, Boston, MA 02115; ^fCenter for Complex Network Research, Department of Physics, Northeastern University, Boston, MA 02115; ^gCenter for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02115; and ^hHoward Hughes Medical Institute, Harvard Medical School, MA 02115

Fig 1



Kim et al. BMC Bioinformatics (2019) 20:328 https://doi.org/10.1186/s12859-019-2897-z

BMC Bioinformatics

RESEARCH ARTICLE

Open Access

Identification of critical connectors in the directed reaction-centric graphs of microbial metabolic networks

Eun-Youn Kim¹, Daniel Ashlock² and Sung Ho Yoon^{3*}

Questions

- 1- What is the difference between bridging centrality and betweenness centrality?
- 2- Can you identify whose position might represent a node of high betweenness centrality in a large, hierarchical organization such as UCSF?
- 3- Why nodes with high degree tend not to be important for information flow?
- **Challenge question 1:** What is the difference between the concept of "cascade number" and network controllability?
- **Challenge question 2:** Would the results of this analysis change significantly if authors used controllability instead of cascade number to identify essential reactions? Why?