Introduction to network science
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The Bridges of Konigsberg

KONINGSBERGA

Can one walk across the
seven bridges and never
cross the same bridge

twice?



The problem as a graph

c
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K Can one walk across the
seven bridges and never
cross the same bridge

twice?
.—

B
1735: Euler’s theorem:

(a) If a graph has more than two nodes of odd degree, there is no path.

(b)  If a graph is connected and has no odd degree nodes, it has at least one path.



Networks as complex systems

= components: nodes, vertices N

= interactions: links, edges L

= system: network, graph (N , L)



Examples of real-life networks

-connections among people

_ -trade among organizations, countries
Social o
networks -citation networks
-computer networks

-telephone calls
o

eQOrganic molecules in chemistry

eGenes and proteins in biology

eConnections among words in text

eTransportation (airlines, streets, electric networks, etc)



Types of networks

Directed vs undirected

Random vs scale-free

Homogeneous vs bi-partite vs heterogeneous



Undirected vs directed networks

Undirected Directed
Links: undirected (symmetrical) Links: directed (arcs).
Graph: Digraph = directed graph:

An undirected
link is the
superposition of
two opposite
directed links.

Undirected links : Directed links :
coauthorship links URLs on the www
Actor network phone calls

protein interactions metabolic reactions



Network topology metrics

Degree (k) and distribution
Path length

Clustering Coefficient
Eccentricity

Radius

Diameter

Centrality
— Closeness
— betweenness



e SetupinR

Install and load SNA package in R

Create a test graph (10 nodes, edges generated randomly)

> #Load the sna(social network analysis) library
> library(sna)
P #Parameters required for the graph
> #N(number of vertices in the graph)
> #plink (probability of a2 link between any 2 vertices)
> N=10
> plink=0.2
> #sna::rgraph() -- Generate Bernoulli Random Graphs
> #2nd argument (1) for one graph is to generated
> #4th argument ("graph") for the graph to be undirected
> #5th argument (FALSE) for the possibility of loops
> graph=rgraph(N, 1,plink, "graph", FALSE)
> #generated graph in a matrix format
> graph
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gplot (graph) for visualization



Degree

> degree (graph)
[1] 6 246442260

Undirected Directed

kA=5 kAin=5

Kaout=1




Degree Distribution
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Random network model

Pal Erdos
(1913-1996)

Alfréd Rényi
(1921-1970)
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Erdés-Rényi model (1960)

Connect with probability p

p=1/6 N=10
<k>~1.5



Random vs scale-free

*E-R: connectivity per node follows normal distribution

# nodes

# connections (k)

eScale-free: Connectivity per node follows power law distribution

# nodes
Log # nodes

# connections (k) Log # connections (k)



An example

Random (E&R) network




Random (E&R) network: limited reach




scale-free network: An example




scale-free network: wider reach
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Shortest path

Undirected Directed

lan=1 lan=4



Clustering coefficient

C|=2n|/k(k-1)

Ca=2*1/5(5-1)= 0.1



Network characterization by degree
and clustering coefficient

A Random network B Scale-free network C Hierarchical network
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Eccentricity

* The eccentricity of a vertex is the greatest
geodesic distance between a given node and
any other node. It can be thought of as how

far a node is from the node most distant from
it in the graph.



Diameter

* The diameter of a graph is the maximum
eccentricity of any vertex in the graph. That is,
it is the greatest distance between any pair of
vertices.

* To find the diameter of a graph, first find the
shortest path between each pair of vertices.
The greatest length of any of these paths is
the diameter of the graph.



Radius

The radius of a graph is the minimum
eccentricity of any vertex



Network Metrics in R: Egocentricity

« Egocentric Network

— The egocentric network (or ego net) of vertex v in graph G is
defined as the subgraph of G induced by v and its neighbors

— It can be used to compute metrics over a local neighborhood,
especially useful when dealing with large networks
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As depicted in this figure, the
egocentric network of 9 has nodes 3,
6 and 8 (in addition to 9). Similarly,
the ego net of 7 includes node 5.
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Egocentric networks for nodes 9 and 7



Network Metrics in R: Egocentricity

« Example: ego.extract()

> #ego.extract takes one or more input graphs and
returns a list containing the egocentric networks
centered on vertices named in ego, using adjacency £
rule neighborhood to define inclusion.
> ego.extract (graph, 6)
$Y6° .
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[3,1 1

W M =
-

L

— The ego-centric network of node 6 has nodes 6, 4 and 9

— Note that the sub-graph extracted in this example has the
original nodes 6, 4, 9 renamed to 1, 2, 3, respectively

— Looking at the adjacency matrix, it can be inferred that node 6 is

connected to both nodes 4 and 9, whereas nodes 4 and g are not
directly connected to each other



Network Metrics in R: Betweenness

« Betweenness Centrality

— A measure of the degree to which a given node lies on the
shortest paths (geodesics) between other nodes in the graph

— For node v in graph G, betweenness centrality (C,) is defined as:
Go(v) = Z £(5.1)

(s.1)

5=V

where £2(s.7) 1s the number of distinct geodesics from s to r and ,(s,7) 1s
the number of geodesics from s to ¢ that pass through v.

— A node has high betweenness if the shortest paths (geodesics)
between many pairs of other nodes in the graph pass through it

— Thus, when a node with high betweenness fails, it has a greater
influence on the information flow in the network



Network Metrics in R: Betweenness

« Example: betweenness()

> #Here node 4 has the highest betweenness
> betweenness (graph)
(1] 20 0 8 28 14 12 00 16 O

— Path lengths/geodesic distances can be calculated using geodist()

> geo=geodist (graph)

> geoSgdist
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— It could be inferred that node 5 requires two hops to reach node
1 and node 10 is not reachable by any other node



Betweenness centrality




Network Metrics in R: Closeness

« Closeness Centrality

— Closeness Centrality (CLC) is a category of measures that rate
the centrality of a node by its closeness (distance) to other nodes

— CLC of a node v is defined as:
V-1
) E— | |
Y vzy, distance(v.v;)
where [V is the number of nodes in the given graph and v; is the node i of the

given graph.

— Closeness Centrality decreases if either the number of nodes
reachable from the node in question decreases, or the distances
between the nodes increases



Network Metrics in R: Closeness

« Example: closeness()

— The 10-node graph we have been using has one disconnected
node; the resulting infinite distances thus created invalidate any
aggregate measure over all nodes such as Closeness Centrality

— So, we choose a sub-graph — the egocentric network of node 6

> #closeness centrality measures how many steps are 44,
required to access every other vertex from a given Q
vertex

> closeness (graph)

[1] O00000O0O0O0O0
> #We now consider a sub-graph of the graph

generated for easy understanding of closeness ’
> graphl=ego.extract (graph, 6) -
S The closeness centrality of node 6 is:
(11 [,2] [,3] CLC(6) =(3-1)/(1+1)=1
E‘*- % 0 (1) é Incidentally, this means node 6 can
2' l ) -
, i & reach all other nodes in one hop.

Now, considering node 4:

> closeness (gzaphl) CLC(4) — (3_1) / (1+2) =90 / 3
[1,]1 1.0000000 = 0.667

[2,] 0.6666667 Similarly for node 9:

[3,] 0.6666667 CLC(9) = 0.667



Closeness Centrality
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Milgram’ s
experiment

Six degrees of separation

1. ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THE
SHEET. So that the next person who receives the letter will know where it
came from

2.  DETACH ONE POSTCARD. FILL IT OUT AND RETURN IT TO
HARVARD UNIVERSITY. To allow us to keep track of the folder as it

moves toward the target person

3. IF YOU KNOW THE TARGET PERSON ON PERSONAL BASIS, MAIL
THIS FOLDER DIRECTLY TO HIS/HER.

4, IF YOU DO NOT KNOW THE TARGET PERSON, MAIL THIS FOLDER
TO APERSONAL ACQUAINTANCE WHO IS MORE LIKELY THAN YOU
TO KNOW THE TARGET PERSON

Milgram, S (1967). Psychol. Today, 2, 60-67)



SIX DEGREES 1991: John Guare

I

Separat;

| \ iln)y b:y'
John Guare ¥

Six Degrees of |

"Everybody on this planet is separated by only six other people. Six
degrees of separation. Between us and everybody else on this planet.
| The president of the United States. A gondolier in Venice.... It's not just
the big names. It's anyone. A native in a rain forest. A Tierra del
l Fuegan. An Eskimo. | am bound to everyone on this planet by a trail of
‘ six people. It's a profound thought. How every person is a new door,
|
|

opening up into other worlds."

z e e e




19 DEGREES OF SEPARATION
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Image by Matthew Hurst

Blogosphere

Network Science: Random Graphs January 31, 2011




Bi-partite networks

bipartite graph (or bigraph) is a graph whose nodes can be divided into two disjoint
sets U and V such that every link connects a node in U to one in V; that is, U and

V are independent sets.

Projection U Projection V

A Examples:

Hollywood actor network
B Collaboration networks
Disease network (diseasome)




GENE NETWORK - DISEASE NETWORK

Gene network
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Goh, Cusick, Valle, Childs, Vidal & Barabasi, PNAS (2007)
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Network Science: Graph Theory January 24, 2011



The diseasome

Disorder Class

@ Bone

@ Cancer

@ Cardiovascular
@ Connective tissue
@ Dermatological
@ Developmental
O Ear, Nose, Throat
(O Endocrine

(O Gastrointestinal
@ Hematological
O Immunological
@ Metabolic

@ Muscular

@ Neurological

@ Nutritional

@ Ophthamological
@ Psychiatric

@ Renal

@ Respiratory

@ Skeletal

@ multiple

O Unclassified
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1547 nodes 2265 nodes
2010 edges 2228 edges
Ratio N/E= 0.77 Ratio N/E= 1.01



Summary network statistics

Results Panel 0
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GWAS

OMIM

Betweeness centrality

Closeness centrality

Shortest path length
distribution
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ROBUSTNESS IN COMPLEX SYSTEMS

Complex systems maintain their basic functions even under errors and failures

Cell 2 mutations

There are uncountable number of mutations and other errors in our cells, yet, we do not notice their
consequences.

Internet = router breakdowns

At any moment hundreds of routers on the internet are broken, yet, the internet as a whole does not
loose its functionality.

Where does robustness come from?

There are feedback loops in most complex systems that keep tab on the component’s
and the system’s ‘health’.

Could the network structure affect a system’s robustness?



Attack threshold for arbitrary P(k)

Attack problem: we remove a fraction f of the hubs.

At what threshold f. will the network fall apart (no giant component)?
Hub removal changes

the maximum degree of the network [K . 2 K’ max $Kmax)
the degree distribution [P(k) = P’(k’)]

A node with degree k will loose some links because some of its neighbors will vanish.

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).



Random (E&R) network: limited reach




scale-free network: wider reach
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Evolution of scale-free networks

1. duplication

2. Preferential attachment

After duplication
Proteins



Google page rank: an example of
preferential attachment

* Preferential attachment will favor older nodes (e.g. journal article
citations). Early journal articles on a given topic more likely to be cited.
Once cited, this material is more likely to be cited again in new articles, so
original articles in a field have a higher likelihood of becoming hubs in a
network of references.

 The Google search engine (PageRank) interprets a link from page A to
page B as a vote, by page A, for page B. It also analyzes the page that casts
the vote. Votes cast by pages that are themselves "important” weigh more
heavily and help to make other pages "important”.



Useful links on networks

» http://barabasilab.neu.edu/courses/phys5116/

» http://math.nist.gov/~RPozo/complex_datasets.html
> http://www?2.econ.iastate.edu/tesfatsi/netgroup.htm
» http://www.visualcomplexity.com/vc/about.cfm

» http://necsi.edu/publications/dcs/

» http://cnets.indiana.edu



