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In this unit we will learn …
• Why p<0.05 is not sufficient in bioinformatics
• Several ways to quantify error in studies with 

many statistical tests
• Pros and cons of using these different error rates
• Methods for controlling error rates that differ in 

their computational complexity
• How to implement multiple testing corrections 

in R code



Multiple testing in population genetics

Genomic regions with exceptionally high population 
differentiation identified in 911 whole genomes

Colonna et al. (2014) Genome Biology

Multiplicity on many levels: 
• Genome-wide 
• SNPs, indels, SVs
• Several pairs of populations



Multiple testing in RNA-seq

Li et al. (2014) Genome Research

Comparison of fly and worm 
gene expression across 
developmental stages

Multiplicity on many levels:
• Two species
• Many stages
• Tissues vs. cell lines



Multiple testing in mass spec

Jager et al. (2011) Nature, 481: 365-370

Interactions mean many tests: 
• Tens of HIV proteins 
• Thousands of human proteins
• Many thousands of potential 
protein-protein interactions

Identifying human proteins that 
interact with each protein in 

the HIV genome



Components of a Multiple 
Hypothesis Test

1. Parameters: quantity of interest

2. Null and alternative hypotheses: family of 
tests; statements about parameter values

3. Test statistics: quantify evidence

4. Error rate: control mistakes

5. Null distribution: assess significance

6. Procedure: decision rule for all tests jointly



• P(Type I error) = α = level of significance

• P(Type II error) = β 

• P(reject H0) = power

If H0 false, power = 1-P(Type II error) = 1- β

Type I error

Type II error

True

H0

False

  Reject      Fail to Reject

Errors when performing one test



H0 is the null hypothesis 

FP TN
TP FN

YES
H0 actually true?     

NO

Reject H0? 
 YES       NO

Errors in multiple testing

FP = # of false positives (Type I errors) 
TP = # of true positives
TN = # of true negatives
FN = # of false negatives (Type II errors)

M0 = # true nulls

M1 = # false nulls

M = # testsR = # 
rejected nulls

M-R



Type I error rates

• Per family error rate (PFER): Expected 
number of false positives.

PFER = E(FP)

• Per comparison error rate (PCER): Expected 
rate of false positives.

PCER = E(FP)/m



• Family-wise error rate (FWER): Probability 
of at least one false positive.

FWER = P(FP>0)

• Generalized FWER (gFWER): Probability of at 
least k+1 false positives.

gFWER(k) = P(FP>k)

Type I error rates



• False discovery rate (FDR): Expected 
proportion of false positives.

• FDR = E(FP/R)

• False discovery proportion (FDP): 
Probability that the proportion of false positives is at 
least q.

FDP(q) = P(FP/R>q)

Type I error rates



Null distributions for multiple testing

• Distribution of the vector of test statistics if the 
null hypotheses were all true.

• Used to convert test statistics to p-values.

• Multiple testing p-values can be compared across 
tests, whereas statistics may be in different scales.

• Different types:

– same for all tests?

– marginal vs. joint 

– parametric vs. non-parametric



Multiple Testing Procedures
Goal: Given test statistics, an error rate, significance 

level & a high-dimensional null distribution, make a 
rejection decision for every test.

• Produces a set of rejected hypotheses

• Equivalently, compute adjusted p-values

- Related to tail probabilities of the null 
distribution, but must account for all the 
other tests so that error rate is controlled

- Value of multiple testing error rate if reject 
for all statistics at least this significant



How to get adjusted p-values?

Two different approaches to control multiple testing 
error rate (e.g., FWER or FDR):

1.  Marginal methods

• Get usual p-values, i.e., tail probabilities under 
each test’s null distribution 

• Adjust these probabilities based on the p-values 
of all other tests



Types of marginal methods

• Single-step: Same p-value adjustment for all 
hypotheses. 

• Step-wise: Adjustments depend on observed 
data (test statistics). 

– Step-down = start with most significant, reduce 
adjustment at each step, stop at first null 
hypothesis not rejected

– Step-up = start with least significant, increase 
adjustment at each step, stop at first rejected 
null hypothesis



How to get adjusted p-values?

Two different approaches to control multiple testing 
error rate (e.g., FWER or FDR):

1.  Marginal methods

• Get usual p-values, i.e., tail probabilities under 
each test’s null distribution 

• Adjust these probabilities based on the p-values 
of all other tests

2. Joint methods directly compute adjusted p-values 
from a joint null distribution



Joint methods
Adjusted p-values can be computed directly from a 
multivariate null distribution 

• Parametric (a.k.a. tabled distributions)

– Multivariate Normal distributions

– Multivariate distribution of F-statistics

• Non-parametric (i.e., resampling based)

– Permutation (2+ groups or continuous)

– Bootstrap (various types)
multtest package

MTP function



Resampling observations jointly
• Permutations

- Think about the sampling unit

- Permute label, position, location for vector of 
observed variables for each sampling unit 

- Scrambling the variables is a common mistake

• Bootstrap

- Resample vectors of variables with replacement

- Adjust the joint bootstrap distribution so that the 
null hypothesis holds



Multiple testing summary
• Completely marginal test

– Marginal p-values from tabled distribution or 
resampling one gene at a time

– Adjust with a marginal method

• Essentially marginal test

– Marginal p-values from joint distribution

– Adjust with marginal method

• Completely joint test

– Marginal and adjusted p-values from joint 
distribution (also test statistic cut-offs)
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Testing many hypotheses at once
• Large multiplicity problem: thousands of 

hypotheses are tested simultaneously!
– Increased chance of false positives. 

– Chance of at least one p-value < α for N independent 
tests is   

   ! converges to one as N increases. 

   e.g., For N=1,000 and α = 0.01, this chance is 
0.9999568!

– Individual p-values of 0.01 no longer correspond to 
significant findings.

• Need to adjust for multiple testing when assessing 
the statistical significance of the observed 
associations.
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Marginal methods: FWER controlling 
p-value adjustment

Name Type Adjustment

Bonferroni Single-step α/m

Sidak (ss) Single-step 1-(1-α)1/m

Holm Step-down α/(m-rj+1)

Sidak (sd) Step-down 1-(1-α)1/(m-rj+1)

Hochberg Step-up α/(m-rj+1)

rj = order statistics (ranks of test statistics)



Name Type Adjustment

Benjamini & 
Hochberg Step-up rjα/m

Benjamini & 
Yekutieli Step-up rjα/(mΣii-1)

Storey Step-up Estimates pFDR 
and q-value

qvalue package
multtest package

mt.rawp2adjp function

Marginal methods: FDR controlling 
p-value adjustment



Joint methods for adjusted p-values

Name Error Rate Type Details

ss.maxT FWER Single-step Common cut-off: based on 
quantiles of max statistics

ss.minP FWER Single-step Common quantile: based on 
quantiles of min p-values

sd.maxT FWER Step-down Gene-specific cut-offs: based on 
max over subsets of T

sd.minP FWER Step-down Gene-specific qtiles: based on 
min over subsets of P

ss.T(k+1) gFWER Single-step Common cut-off: based on 
k+1st largest T

ss.P(k+1) gFWER Single-step Common qtile: based on k+1st 
smallest P

multtest package



• Simulate two vectors of numbers (n=10 
random normal variables per group) 50 times 
independently. Store as a 50 x 20 matrix.

• Generate b=100 permutation and bootstrap 
samples (50 rows). For the bootstrap, 
remember to standardize the original data to 
have mean zero in each group. 

• Compute a t-statistic for each row, 100 times.

• Calculate parametric, permutation and 
bootstrap p-values. Compare results.

• Repeat for different means in the two groups 
and with correlation between the rows. 

Implementing multivariate resampling



• Independence of test statistics

– Bonferroni

– Benjamini & Hochberg (or PRD)

– Storey

• Positive orthant dependent statistics

– Sidak (both versions)

• P-values satisfy Simes inequality

– Hochberg (also assumes independence)

Dependence Assumptions

€ 

P(prj >αrj /m) ≥1−α



With the joint null distribution of the test statistics, 
direct control of Type I error rates is possible. 

Joint methods for adjusted p-values
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Estimated test statistics null distribution
Marginal
P-values

Joint
P-values

Take max of 
each column


