Multiple Hypothesis Testing

Katie Pollard

In this unit we will learn ...

- Why p<0.05 is not sufficient in bioinformatics
- Several ways to quantify error in studies with many statistical tests
- Pros and cons of using these different error rates
- Methods for controlling error rates that differ in their computational complexity
- How to implement multiple testing corrections in R code

Multiple testing in population genetics

Genomic regions with exceptionally high population differentiation identified in 911 whole genomes

Multiplicity on many levels:

- Genome-wide
- SNPs, indels, SVs
- Several pairs of populations

Multiple testing in RNA-seq

Cell Lines

83

52.R.s

Kan42

1182-49

L3 CMB

.3 prothoracic leg disc-

minus blood sails-

ONR

M-D-DO

M -0m02

M-0=06

CME WO

M.-Debit-ch

ML-DmBG1-ct ML-DmD1-ct ML-DmD17-ct ML-DmD11

CARE 11

ML-DHD18-st ML-DHD9

	Cell Types		
Z1/2 Gel		inner für in	
A Ce	J 🖉		
A		Concept of one (1)	
NSML, Neu	NSMR RMS	Deliviti al av., 111 Deliviti al av., 111	
A.M Net		Constant of	

Tissues

Haryngei

Muscle

4-cell

Embryos

Comparison of fly and worm gene expression across developmental stages

Multiplicity on many levels: • Two species

- Many stages
- Tissues vs. cell lines

Li et al. (2014) Genome Research

Multiple testing in mass spec

Identifying human proteins that interact with each protein in the HIV genome

Interactions mean many tests:
Tens of HIV proteins
Thousands of human proteins
Many thousands of potential protein-protein interactions

Components of a <u>Multiple</u> Hypothesis Test

- I. Parameters: quantity of interest
- 2. Null and alternative hypotheses: family of tests; statements about parameter values
- 3. Test statistics: quantify evidence
- 4. Error rate: control mistakes
- 5. Null distribution: assess significance
- 6. **Procedure:** decision rule for all tests jointly

Errors when performing one test

Reject Fail to Reject

- P(Type I error) = α = level of significance
- $P(Type II error) = \beta$
- $P(reject H_0) = power$

If H_0 false, power = I-P(Type II error) = I- β

Errors in multiple testing

H0 is the null hypothesis

TP = # of true positives

TN = # of true negatives

FN = # of false negatives (Type II errors)

Type I error rates

• Per family error rate (PFER): Expected number of false positives.

PFER = E(FP)

• **Per comparison error rate (PCER):** Expected rate of false positives.

PCER = E(FP)/m

Type I error rates

• Family-wise error rate (FWER): Probability of at least one false positive.

FWER = P(FP>0)

 Generalized FWER (gFWER): Probability of at least k+1 false positives.

gFWER(k) = P(FP>k)

Type I error rates

• False discovery rate (FDR): Expected proportion of false positives.

FDR = E(FP/R)

 False discovery proportion (FDP): Probability that the proportion of false positives is at least q.

FDP(q) = P(FP/R > q)

Null distributions for multiple testing

Distribution of the vector of test statistics if the null hypotheses were <u>all</u> true.

Used to convert test statistics to p-values.

Multiple testing p-values can be compared across tests, whereas statistics may be in different scales.

Different types:

same for all tests?

marginal vs. joint

parametric vs. non-parametric

Multiple Testing Procedures

<u>Goal</u>: Given test statistics, an error rate, significance level & a high-dimensional null distribution, make a rejection decision for every test.

- Produces a set of rejected hypotheses
- Equivalently, compute adjusted p-values
 - Related to tail probabilities of the null distribution, but must account for all the other tests so that error rate is controlled
 - Value of multiple testing error rate if reject for all statistics at least this significant

How to get adjusted p-values?

Two different approaches to control multiple testing error rate (e.g., FWER or FDR):

- I. Marginal methods
 - Get usual p-values, i.e., tail probabilities under each test's null distribution
 - Adjust these probabilities based on the p-values of all other tests

Types of marginal methods

- **Single-step:** Same p-value adjustment for all hypotheses.
- **Step-wise:** Adjustments depend on observed data (test statistics).
 - Step-down = start with most significant, reduce adjustment at each step, stop at first null hypothesis not rejected
 - Step-up = start with least significant, increase adjustment at each step, stop at first rejected null hypothesis

How to get adjusted p-values?

Two different approaches to control multiple testing error rate (e.g., FWER or FDR):

- I. Marginal methods
 - Get usual p-values, i.e., tail probabilities under each test's null distribution
 - Adjust these probabilities based on the p-values of all other tests
- 2. Joint methods directly compute adjusted p-values from a joint null distribution

Joint methods

Adjusted p-values can be computed directly from a multivariate null distribution

- Parametric (a.k.a. tabled distributions)
 Multivariate Normal distributions
 Multivariate distribution of F-statistics
- Non-parametric (i.e., resampling based)
 Permutation (2+ groups or continuous)
 Bootstrap (various types)

multtest package MTP function

Resampling observations jointly

- Permutations
 - Think about the sampling unit
 - Permute label, position, location for vector of observed variables for each sampling unit
 - Scrambling the variables is a common mistake
- Bootstrap
 - Resample vectors of variables with replacement
 - Adjust the joint bootstrap distribution so that the null hypothesis holds

Multiple testing summary

Completely marginal test

Marginal p-values from tabled distribution or resampling one gene at a time

Adjust with a marginal method

• Essentially marginal test

Marginal p-values from joint distribution

Adjust with marginal method

Completely joint test

Marginal and adjusted p-values from joint distribution (also test statistic cut-offs)

Testing many hypotheses at once

Large multiplicity problem: thousands of hypotheses are tested simultaneously!

Increased chance of false positives.

Chance of at least one p-value < α for N independent tests is $1 - (1 - \alpha)^N$

→ converges to one as N increases.

e.g., For N=1,000 and α = 0.01, this chance is 0.9999568!

Individual p-values of 0.01 no longer correspond to significant findings.

Need to adjust for multiple testing when assessing the statistical significance of the observed associations.

Marginal methods: FWER controlling p-value adjustment

Name	Туре	Adjustment	
Bonferroni	Single-step	α/m	
Sidak (ss)	Single-step	 -(- α) /m	
Holm	Step-down	$\alpha/(m-r_j+1)$	
Sidak (sd)	Step-down	$I - (I - \alpha)^{1/(m-r_j+1)}$	
Hochberg	Step-up	$\alpha/(m-r_j+1)$	

r_j = order statistics (ranks of test statistics)

Marginal methods: FDR controlling p-value adjustment

Name	Туре	Adjustment	
Benjamini & Hochberg	Step-up	r _j α/m	
Benjamini & Yekutieli	Step-up	$r_j \alpha / (m \Sigma_i i^{-1})$	
Storey	Step-up	Estimates pFDR and q-value	

qvalue package
multtest package
mt.rawp2adjp function

Joint methods for adjusted p-values

Name	Error Rate	Туре	Details
ss.maxT	FWER	Single-step	Common cut-off: based on quantiles of max statistics
ss.minP	FWER	Single-step	Common quantile: based on quantiles of min p-values
sd.maxT	FWER	Step-down	Gene-specific cut-offs: based on max over subsets of T
sd.minP	FWER	Step-down	Gene-specific qtiles: based on min over subsets of P
ss.T(k+I)	gFWER	Single-step	Common cut-off: based on k+1st largest T
ss.P(k+1)	gFWER	Single-step	Common qtile: based on k+1st smallest P

multtest package

Implementing multivariate resampling

- Simulate two vectors of numbers (n=10 random normal variables per group) 50 times independently. Store as a 50 x 20 matrix.
- Generate b=100 permutation and bootstrap samples (50 rows). For the bootstrap, remember to standardize the original data to have mean zero in each group.
- Compute a t-statistic for each row, 100 times.
- Calculate parametric, permutation and bootstrap p-values. Compare results.
- Repeat for different means in the two groups and with <u>correlation</u> between the rows.

Dependence Assumptions

Independence of test statistics

Bonferroni

Benjamini & Hochberg (or PRD)

Storey

Positive orthant dependent statistics

Sidak (both versions)

P-values satisfy Simes inequality

$$P(p_{r_j} > \alpha r_j / m) \ge 1 - \alpha$$

Hochberg (also assumes independence)

Joint methods for adjusted p-values

With the joint null distribution of the test statistics, direct control of Type I error rates is possible.

Take max of each column