Multiple Hypothesis Testing

BMI 206

https://xkcd.com/1478/

What is a p-value?

- **p-value:** the probability of obtaining a result at least as extreme as observed if H₀ is true.
 Null hypothesis (H₀) is usually: chance/no effect
- *P* < 0.05 does not necessarily indicate a meaningful difference.
- *P* > 0.05 does not necessarily indicate no meaningful difference.

Outcomes of One Test

Type I vs. Type II error

Life Hack: the boy who cried wolf

- 1. Caused a **type l error**:
 - townspeople thought there was a wolf when there was not (False Positive)
- 2. Then caused a **type II error**:
 - townspeople thought there was no wolf when there was (False Negative)

Statistical Power

 The power of a test is the probability of correctly rejecting a null hypothesis (1 – P(FN))

Power varies based on the effect size and the sample size.

Statistical Power

- Power increases with sample size.
- Power increases with effect size.
- Many studies are underpowered.

Controlling Errors in a Single Test

Significance Level (α) = P(FP)

Power = $1 - P(FN) = 1 - \beta$ (H₀ false)

What happens when we test more than one hypothesis?

A motivational cartoon...

https://xkcd.com/882/

Why is testing multiple hypotheses a problem?

What is the distribution of p-values under the null?

Observed p-value

What is the chance under the null of at least one p-value < α in m ind. tests?

http://www.compbio.dundee.ac.uk/user/mgierlinski/talks/pvalues2/p-values8.pdf

Outcomes of Many Tests

What can we do?

 In one test, α controls the family-wise error rate (FWER), the probability of at least one false positive :

 $P(FP > 0) \le \alpha$

• Over all m tests, this is: $P(\#FP > 0) \le \alpha$

Bonferroni Correction

To control FWER over **m** tests, adjust the p-value threshold (α) we use:

 $\alpha_{\text{Bonferroni}} = \alpha / m$

If α =.05 and 20 tests: $\alpha_{Bonferroni} = 0.05 / 20 = 0.0025$

Or, equivalently, correct the p-values: $p_{Bonferroni} = p * 20$

Bonferroni Correction Graph

http://www.compbio.dundee.ac.uk/user/mgierlinski/talks/pvalues2/p-values8.pdf

Proof

- Let $p_1, ..., p_m$ be the p-values for all tests
- Let I_0 be the indices of all m_0 true null hypoth.
- We are interested in:

$$P(p_i \le \frac{\alpha}{m})$$
 for at least one i in I_0

• By Boole's inequality, this is \leq :

$$\sum_{i \in I_0} P(p_i \le \frac{\alpha}{m}) = \sum_{i \in I_0} \frac{\alpha}{m} = \frac{m_0 \alpha}{m} \le \alpha$$

Boole's Inequality

The probability that **at least one** of the events happens is no greater than the sum of the probabilities of the individual events

Problems with Bonferroni

- Bonferroni correction is conservative
 - Can use Holm-Bonferroni instead:

$$P_k < rac{lpha}{m+1-k}$$

- Bonferroni says little about the mix of TPs and FPs in the set of hypotheses called significant.
- If we expect that many tests should reject H₀, we may be fine with more than one FP.

Genome-wide Analyses

A	BRCA2- Mutation- Positive Tumors	Sporadic Tumors	BRCA1- Mutation- Positive Tumors	Clone	Gene
A				CHOTNE 897781 139354 809981 841617 823940 29054 810057 950682 26184 344109 36775 341130 417124 429135 44666 340644 246194 51209 949932 784830 26082 46019 247818 214731 236055 197176 568687 725680 823775 293104 46182 307843 366647 21198 42888 38763 366824 840702 564803 137638 73531 32231 274638 3745638 73531 32231 274638	Gene KRTB HSPC195 GPX4 ODC antizyme TOB1 ACTR1A CSDA PFKP PCNA HADHA RBL2 APEX ST13 G22P1 ITGB8 ESTs PPP1CB NSEP1 D123 VLDLR MCM7 ESTs KIAA0601 DKF2P564M2423 GDI2 HECH TFAP2C GNAI3 PHYH CTPS ESTs BRF1 TP53BP2 ILF2 SPHAR CDK4 SPS FOXM1 ESTS <
	Real Property			810551	LRP1

Many genes are likely to be differentially expressed between conditions.

Why not control # FPs over tests that reject the null?

False Discovery Rate (FDR) FP / (FP+TP) VS. False Positive Rate (FPR) FP / (FP+TN)

q-value: the FDR analog of the p-value

Benjamini-Hochberg Procedure

1. Rank p-values in ascending order: $P_{(1)} \dots P_{(m)}$. 2. For a given α , find largest k such that $P_{(k)} \leq \frac{k}{m} \alpha$. 3. Reject the null for all $H_{(i)}$ for i = 1, ..., k.

http://www.compbio.dundee.ac.uk/user/mgierlinski/talks/pvalues2/p-values8.pdf

Benjamini-Hochberg Procedure

- 1. Rank p-values in ascending order: $P_{(1)} \dots P_{(m)}$.
- 2. For a given α , find largest k such that $P_{(k)} \leq \frac{k}{m} \alpha$.
- 3. Reject the null for all $H_{(i)}$ for i = 1, ..., k.
- BH procedure is less conservative than Bonferroni correction.
- In genomics, we often expect many rejections of the null and can tolerate a few false positives.

BH Graphical Example

Imagine performing 1000 tests, 30 with H₀ false:

Bonferroni							
	No effect	Effect	Total				
Significant	0	4	4				
Not significant	970	26	996				
Total	970	30	1000				

Benjamini-Hochberg							
	H _o true	H ₀ false	Total				
Significant	2	21	23				
Not significant	968	9	977				
Total	970	30	1000				

http://www.compbio.dundee.ac.uk/user/mgierlinski/talks/pvalues2/p-values8.pdf

Other useful metrics

Sensitivity, Recall, True Positive Rate TP / (TP+FN)

Specificity, True Negative Rate TN / (TN+FP)

Precision, Positive Predictive Value TP / (TP+FP)

Discussion

1. How can we account for correlation structure among the results of our multiple tests?

2. Should you perform multiple testing correction for all the hypotheses you test in your life?

Marginal correction methods assume independence of tests

- Bonferroni
- Holm-Bonferroni
- Benjamini-Hochberg
- etc.

Bootstrapping can help...

Joint methods for adjusted p-values

Comparing the observed stats to the joint null distribution of the test statistics enables direct control of Type I error rates.

Simulation Example

Tomorrow

 Examples of permutation and bootstrap methods for jointly adjusting for multiple

Home » Bioconductor 3.14 » Software Packages » multtest

multtest

testing

Resampling-based multiple hypothesis testing

Bioconductor version: Release (3.14)

Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (GFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (centered, centered and scaled, quantile-transformed). Single-step and step-wise methods are available. Tests based on a variety of t- and F-statistics (including t-statistics based on regression parameters from linear and survival models as well as those based on correlation parameters) are included. When probing hypotheses with t-statistics, users may also select a potentially faster null distribution which is multivariate normal with mean zero and variance covariance matrix derived from the vector influence function. Results are reported in terms of adjusted p-values, confidence regions and test statistic cutoffs. The procedures are directly applicable to identifying differentially expressed genes in DNA microarray experiments.

Author: Katherine S. Pollard, Houston N. Gilbert, Yongchao Ge, Sandra Taylor, Sandrine Dudoit

Maintainer: Katherine S. Pollard <katherine.pollard at gladstone.ucsf.edu>

Citation (from within R, enter citation("multtest")):

Pollard KS, Dudoit S, van der Laan MJ (2005). *Multiple Testing Procedures: R multtest Package and Applications to Genomics, in Bioinformatics and Computational Biology Solutions Using R and Bioconductor*. Springer.