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In this unit we will learn…  

• How to formulate generalized linear models 
(GLMs) with outcomes that are not Normally 
distributed (e.g., binary, counts)

• The main components of GLMs

• Interpretation of parameters in GLMs such as 
logistic and Poisson regression

• The “exponential family” of distributions

• How to fit and interpret LMs and GLMs in R



Relating Different Data Types

Continuous 
or Both Categorical

Continuous Linear Regression / 
ANCOVA ANOVA

Categorical Generalized Linear 
Model Regression

Contingency 
Tables / Log-linear 
Model Regression

Covariate (independent variable)

Outcome
(dependent 

variable)



Generalized linear model (GLM)

If outcome is not quantitative, the linear model 
framework can be extended via data 
transformations, called link functions.

• Binary: logit (alternatives: probit, log-log)
• Counts: log (also known as log-linear model)

The covariates are still a linear combination. 

The parameters are estimated by numerical 
methods (e.g., Newton-Raphson). 

But the error has a different distribution.



Link functions in GLMs

The link function, denoted g(), systematically 
relates expected value of outcome (E[Y] = µ) to 
a linear combination of covariates (X): 

g(µ)=ß’X
• Identity link: g(µ) = µ
• Log link: g(µ) = log(µ)
• Logit link: g(µ) = log(µ/(1-µ))
• Log-log link: g(µ) = log(-log(1-µ))
• Probit link: g(µ) = Phi-1(µ)



Error distributions in GLMs

Different types of outcome variables require 
different error distributions, e.g., 

• Continuous (link=identity): Gaussian (Normal)

• Binary (link=logit): Binomial

• Counts (link=log): Poisson
These are the random components. 

The systematic component is the mean ß’X, e.g.: 
ß0 + ß1 X



Logistic regression parameters
Consider: Y binary with E(Y) = Pr(Y=1) = π

logit(π) = log(π/(1-π)) = ß0 + ß1 X
Interpretation of ß1 is the expected change in logit 

for a unit increase in X. What is this?

If X is binary (e.g., 0=wild-type vs. 1=mutant):

odds | X=0 = exp{ß0}, odds | X=1 = exp{ß0}exp{ß1}

Odds increase multiplicatively by exp{ß1} per unit X. 

Odds ratio = (odds | X=1)/(odds | X=0) = exp{ß1}



Poisson regression parameters

Consider: Y counts with E(Y) = µ
log(µ) = ß0 + ß1 X

Interpretation of ß1 is the expected change in log 
count for a unit increase in X. 

Exponentiate to get back to count scale.

If X is binary (e.g., 0=wild-type vs. 1=mutant):

µ | X=0 = exp{ß0} and µ | X=1 = exp{ß0 + ß1}
Relative risk = (µ | X=1)/(µ | X=0) = exp{ß1}



Over-dispersion
The Poisson distribution has the variance equal to the 

mean. Count data in bioinformatics frequently violates 
this assumption, e.g.,

• Gene expression via RNA-seq (read counts/transcript)

• Taxon abundance in metagenomics (reads counts/taxa)

Variance > mean is called “over-dispersion”.

The negative binomial distribution is a good alternative:

mean = µ, variance = µ + µ2/k



The common error distributions in GLMs (Gaussian, 
Binomial, Poisson) are all members of the exponential 
family of distributions which can be written:

f(y) =a(µ)b(y)exp{g(µ)y}

where g() is the link function. 

If you can arrange the error distribution into this form, 
the result gives you the canonical link function.

GLMs and Exponential Family





Linear model as a GLM

What is the distribution function?

Can we write it as an exponential family?

What is the canonical link?

What is the systematic component?



Logistic regression model

What is the distribution function?

Can we write it as an exponential family?

What is the canonical link?

What is the systematic component?



Poisson regression model

What is the distribution function?

Can we write it as an exponential family?

What is the canonical link?

What is the systematic component?


