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In this unit we will learn …
• How commonly used distance 

measurements encode different 
notions of “close” 

• How to measure similarity of high-
dimensional vectors



Distances
Multivariate statistical methods require a notion 

of pairwise distance between objects.
– Dissimilarity

• Non-negative: d(x,y)≥0
• Symmetric: d(x,y)=d(y,x)
• Monotone: d(x,y)>d(x,z) if z more similar to x 

– Metric (additional conditions)
• Definite: d(x,y)=0 iff x=y
• Triangle inequality: d(x,y)+d(y,z) ≥d(x,z)



• Manhattan distance (Hamming for binary 
data)

• Euclidean distance

Examples of the Minkowski metric

Distance Metrics

€ 

d(x,y) = xi − yi
i
∑ ∈ (0,∞)

€ 

d(x,y) = (xi − yi)
2

i
∑ ∈ (0,∞)



Correlation Distances

Sample correlation measures r(x,y):
• Pearson
• Uncentered (cosine-angle distance)
• Spearman
• Kendall’s Tau
• Maximal Information Coefficient 

€ 

d(x,y) =1− r(x,y)∈ (0,2)



More on Distances

• Minkowski metrics: magnitude 
• Correlation distances: pattern (or both)
• The absolute value of any distance can also 

be used, e.g. 

• Distances between distributions are a 
different concept, e.g., Kullback-Leibler

DKL(p(X)||q(X))= - ∑x p(x) log{q(x)/p(x)}
                    = ∑x p(x) log{p(x)/q(x)}

€ 

d(x,y) =1− r(x,y) ∈ (0,1)



Perfectly Correlated



Anti-Correlated



Same Mean, Uncorrelated



Same Mean, No Variation





Distances in R

Function Package Distances
dist stats Euclidean, 

Manhattan, 
Canberra, 
max, binary

daisy cluster
bioDist

Euclidean, 
Manhattan

distancematrix
distancevector

hopach Euclidean, cor, 
cosine-angle 
(abs versions)


