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The geometry of linear regression

* A collection of n features across m individuals + one observation per individual
 datapoints: x_1, x_ 2, x_3, ..., x_m\in RAn, observation: y \in R"m

 Model: for some reason, we think that y_i depends on x_ij’s
Specifically, the ith measurement of y could be given by a linear combination of x_ij’s

(approximated) (plus a constant / intercept)

Value of the jth feature of the ith individual

|

1
observation/measurement C AU L. /6
of the ith individual - Y E :Oéj Lij T
J=1

]

(Unknown) Parameters




(Mm=6, n=4)

The geometry of linear regression

observation/measurement
of the ith individual

n
=1

Value of the jthfeature of the ithindividual

|

&5 + O

|

|

(Unknown) Parameters

.N

T2

a3

i - ol + |5




(Mm=6, n=4)

The geometry of linear regression

observation/measurement
of the ith individual

n
=1

Value of the jthfeature of the ithindividual

|

&5 + O

|

|

(Unknown) Parameters

.N
.N

T2+
T2y 4

a3

a3

B - o+ |5
- o+ |5




The geometry of linear regression

observation/measurement
of the ith individual

- Yi ™~ Z&j%j + 5
j=1

|

Value of the jthfeature of the ithindividual

|
|

(Unknown) Parameters

(Mm=6, n=4)




The geometry of linear regression

Value of the jthfeature of the ithindividual

no
observation/measurement C AU L. /6
of the ith individual - Yi E : Cj g +
7=1

| |

(Unknown) Parameters

(Mm=6, n=4)

R | D [ [




The geometry of linear regression

Value of the jthfeature of the ithindividual

no
observation/measurement C AU L. /6
of the ith individual - Y E : Q5 g T
J=1

| |

(Unknown) Parameters

(Mm=6, n=4)

| | | [ |




(Mm=6, n=4)

The geometry of linear regression

observation/measurement
of the ith individual

Value of the jthfeature of the ithindividual

no |
- Yi ~ Z&jﬂiz‘j + 5
=

(Unknown) Parameters

D | [ [ | |




The geometry of linear regression

Value of the jthfeature of the ithindividual

no |
- Yi ~ Z&jﬂiz‘j + 5
=

(Unknown) Parameters

observation/measurement
of the ith individual

(m=6, n=4)
B BT BTl RO Rl
" IOET BT Bm RN EE
T e R B
INC BT BT ERo R
" IRT BacT BT RN EE
T B RN B R




(m=6, n=4)

The geometry of linear regression

observation/measurement
of the ith individual

n
g=1

Value of the jthfeature of the ithindividual

|

&g + O

|

|

(Unknown) Parameters

¢

_I_

_|_

HEEEEE
_I_

S
HEEEEEN
_I_

R
HEEEEE




(m=6, n=4)

The geometry of linear regression

observation/measurement
of the ith individual

n
=1 T
(Unknown) Parameters \

&g + O

|

Value of the jthfeature of the ithindividual

|

¢

_I_

_|_

HEEEEE
_I_

S
HEEEEEN
_I_

R
HEEEEE

+«—— Let’s rename the intercept




(m=6, n=4)

The geometry of linear regression

observation/measurement
of the ith individual

n-—+1

- Yi ™ E Q5L g
I=1

(Unknown) Parameters \

Value of the jthfeature of the ithindividual

|

¢

_I_

_|_

+«—— Let’s rename the intercept

HEEEEE
_I_

g
HEEEEEN
_I_

O%
HEEEEE



(m=6, n=4)

The geometry of linear regression

observation/measurement

of the ith individual

n-—+1

Value of the jthfeature of the ithindividual

|

> yz g E OCJCEZJ Lint+l = 1,V
=1

(Unknown) Parameters

¢

Q
N




The geometry of linear regression

Value of the jthfeature of the ithindividual

|

1
observation/measurement C AU L.
of the ith individual - Y E : 5l
J=1 T

(Unknown) Parameters

(In general)
“A system of m equations with n unknowns”




observation/measurement

Value of the jth feature

of the ith individual of the it individual

NN e
Yi ™ Z@j%j
Jj=1 1

(Unknown) Parameters

m™m

| 4} |
IN.

No solution when m>n and rank(X)=n, i.e., y#Xa, for any a.

The geometry of linear regression

“A system of m equations with n unknowns”



Value of the jth feature
of the ithindividual

observation/measurement
of the ith individual

NN e
Yi ™ Z@j%j
Jj=1 1

(Unknown) Parameters

m™m

| T |
IN.

* No solution when m>n and rank(X)=n, i.e., y#Xa, for any a.

The geometry of linear regression

“A system of m equations with n unknowns”

* Approach: minimize error / find parameters that bring Xa as close as possible to y:




observation/measurement
of the ith individual

Value of the jth feature
of the ithindividual

n l
\ yi ™ Z Yy

j=1 1

(Unknown) Parameters

* No solution when m>n and rank(X)=n, i.e., y#Xa, for any a.

The geometry of linear regression

| T |
@
m m\J

“A system of m equations with n unknowns”

* Approach: minimize error / find parameters that bring Xa as close as possible to y:

min —E E ;T
a€R™ m ST LT

Mean

)

Square

Error

~

min [y — Xal|’
aER™



observation/measurement
of the ith individual

\
Yi

* No solution when m>n and rank(X)=n, i.e., y#Xa, for any a.

 Approach: minimize error /
find parameters that bring Xa as close as possible to y:

: 1
min —Z
aER™ 1N “—

1

yi—zag‘%’j & Imin HY—X(%H2
J

Error acR™

Square

Mean

The geometry of linear regression

| T |
Value of the jth feature |
of the ithindividual
n l
N o o o m N
E : jlig
J=1 1
(Unknown) Parameters

“A system of m equations with n unknowns”

Solution
(m=3, n=2)




The geometry of linear regression

Calculating O arg min Hy — XO‘| |2
@7

Solution
(m=3, n=2)




The geometry of linear regression

Calculating O arg min Hy — XCV| ‘2
@7

* Orthogonality Principle: “the minimum is achieved when the error is perpendicular to all columns of X”

Solution
(m=3, n=2)




The geometry of linear regression

Calculating O arg min Hy — XCV| ‘2
@7

* Orthogonality Principle: “the minimum is achieved when the error is perpendicular to all columns of X”

x; (y — Xa*) =0, Vi

Solution
(m=3, n=2)
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Calculating O arg min Hy — XCV| |2
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* Orthogonality Principle: “the minimum is achieved when the error is perpendicular to all columns of X”
T *\ -
x; (¥ — Xa" ) =0,Vi

* The solution a* satisfying the above equations

is given by: Solution
o — (XTX)—ley (m=3, n=2)
Proof:
Xt (y — Xa™) =0

&X'y - XT"Xa* =0

s Xy = XTXa*

& (XTX) T Xy = (XTX)"'X X o’
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Summary

Linear regression: min Hy — XO&‘ |2
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Solution is given by projecting y onto the data

Oé* _ (XTX)_lXTy

Solution
(m=3, n=2)




The geometry of linear regression
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Where is the “regression line” ?
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The geometry of linear regression

Where is the “regression line” ?

Summary
° n=‘|, genera| m “o i : di . ” Linear I'egI'CSSiOIlI min | ‘y T XO£| |2
vectors in m dimensions o
Solution is given by projecting y onto the data
&* _ (XTX)_ley
m ~ e
Solution '-
(m=3, n=2)
vt
(X3,y3) y=O*
€s €5
(x1.1) €4 (Xs.Ys) “m vectors in 2 dimensions”
€1 €2 (X4,y4)
(X2,y2) )
X /
€2 =612+ €22+ ...+ Em? 7 = %
 Note that solution minimizes the vertical (squared) distances from points to the fitted line.

— the points on the line are of the form (x;, axi) and &i = [xi - axi|

“Complete trust in x-coordinates”



The geometry of linear regression

“Asymmetry In linear regression”

min ||y — ax||? —> Describey in terms of x (y~Xx)
8%

Note that we can do the opposite min ||x — ary||* to describe x~y
87
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ldeas for a “symmetric” version?
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Towards Principal Component Analysis

Find z that best describes x and y y y

®(Xm, Ym)

Points in two dimensions as in previous example (x1.y1) ® (x5y5)
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Towards Principal Component Analysis

Find z that best describes x and y

 Points in two dimensions as in previous example
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(we may as well set it to be 1)
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Find z that best describes x and y
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Towards Principal Component Analysis

Find z that best describes x and y

 Points in two dimensions as in previous example
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The same z maximizes the magnitude of the projections!
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Find z that best describes x and y
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Find z that best describes x and y
 Points in two dimensions as in previous example
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max zIT MMz , where M = [x,y] € R™*2 (the DATA matrix)
z:||z||=1

Maximizing a quadratic function subject to constraints is notoriously hard (NP-hard problem)

In our case above: very efficient algorithm exists (elegant solution mathematically):

ﬂflzﬁx zTMM?Tz = Moo (MM?'), z* = principal eigenvector of MM™*
z:||z||=1
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Towards Principal Component Analysis

Find z that best describes x and y

Points in two dimensions as in previous example
T T
X = |X1,L2, ..., Tm]

Yy — :y17y27°°'7ym]T

max zIT MMz , where M = [x,y] € R™*2 (the DATA matrix)
z:||z||=1

Maximizing a quadratic function subject to constraints is notoriously hard (NP-hard problem)

In our case above: very efficient algorithm exists (elegant solution mathematically):

ﬂflzﬁx zTMM?Tz = Moo (MM?'), z* = principal eigenvector of MM™*
z:||z||=1

max w.M!IMw, w* = principal eigenvector of MM
w:|[w||=1

In our derivation, we have ignored the “intercept”. Following exactly the same steps, leads to the same optimization
problem but with the data matrix M being zero-centered: M = [X — (5, Y — [4y)]

1

m — 1

*

MM is the empirical covariance matrix! W is the first principal component

Mw™ = 2"/ Ao gives the coordinates of the projected points

)\maa:

1 is the “explained variance”
m ——




Principal Component Analysis — General Case

* A collection of n features across m samples; datapoints: Xi1,X2,X3,...,Xm,m € R"”
» zero-centered data matrix: M = [X;,Xa,..., %]’ € R™*" where %; = x; — LS xp
(PC1) max  ||Mwl/|?, w* = principal eigenvector of M* M

weR™:||w||=1
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* Projection along w* reduces the dimensions from n to 1:
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— projected datapoints: x{w*,x;w*, ..., %X w* € R
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— variance: - Y (xfw*)2 = MW T _ A

m—1 m—1

PCA minimizes the “error” from points to projection

PCA finds the “direction” of maximum variance
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Resources

Introquctiop to
Applied Linear Algebra

Vectors, Mztrices, and | east Squares

Introduction to

LINEAR ALGEBRA

SIXTH EDITION

Gareth James - Daniela Witten - Trevor Hastie -
Robert Tibshirani - Jonathan Taylor

with Applications in Python

9 springer

Introduction to Applied Linear Algebra — Vectors, Matrices, and Least Squares
Stephen Boyvd and Lieven Vandenberghe

https://web.stanford.edu/~boyd/vmls/vmls.pdf

Introduction to Linear Algebra
Gilbert Strang

https://math.mit.edu/~gs/linearalgebra/ila6/indexila6.html

Introduction to Statistical Learning
James, Witten, Hastie, Tibshirani, Taylor

https://www.statlearning.com/

Vectors

/

Span

Linear
transformations

10:59

Matrix
multiplication
/ . _’

10:04

3D

transformations

4:46

Determinant

Inverse matrices
Rank
Null space

a.00

Nonsquare matrices

3 1
4 1
5 9

4:27

Dot pr()(l“('tS
l)l lﬂ]jij,; - i

14:12

Cross products
| g~

8:54

Cross products

as transformations

\
"

13:10

Cramer’s rule

&

12:12

Change of basis

12:51

Eigenvectors
Eigenvalues

M Az =3++/32-5=1313

Abstract vector
spaces

\
R



https://www.stanford.edu/~boyd/
https://www.ee.ucla.edu/~vandenbe/
https://web.stanford.edu/~boyd/vmls/vmls.pdf
https://math.mit.edu/~gs/linearalgebra/ila6/indexila6.html
https://www.statlearning.com/
https://www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
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Singular Value Decomposition

* Any mxn matrix A can be written as a product of three matrices (decomposition) U, Z, and VT with the
following properties:

e UecR™™ V cR"™™ are orthonormal, (i.e., U'U=Iand V'V =1)

e 2. is diagonal.
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Singular Value Decomposition
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Image reconstruction with d-dimensional SVD

GPT-40: describe what you see in this image

The image appears to show a large Rubik's Cube-like structure in an outdoor setting, surrounded by blurred
figures of people, likely indicating a public or event space. The cube has vividly colored squares on each side,

similar to a traditional Rubik's Cube, with colors like orange, yellow, red, green, blue, and white visible. The
image is heavily distorted with a pixelated or glitch-like effect, making the details somewhat unclear. The
background seems to depict an outdoor environment, possibly with trees or structures in the distance.
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Image reconstruction with d-dimensional SVD

GPT-40: describe what you see in this image

The image appears to show a person dressed as a giant Rubik's Cube, with colorful squares covering the cube-
shaped costume. The background seems to be outdoors, with other people and possibly a fence or wall visible

in a slightly blurred and distorted manner. The overall quality of the image includes digital noise or artifacts,
which may distort the fine details.
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Image reconstruction with d-dimensional SVD

d =532

(original size)

GPT-40: describe what you see in this image

The image shows a person dressed in a creative and colorful costume resembling a Rubik's Cube. The
costume is made to look like a large, three-dimensional Rubik's Cube, with panels in various colors such as red,
yellow, green, orange, blue, and white. The person's arms and face are visible, and the top of the cube has a

section open, with part of the costume extending upwards, possibly representing a corner of the cube. The
individual appears to be in a public space, surrounded by other people, some of whom are standing, and one
person in a wheelchair. The background features trees and a long white tent-like structure, suggesting this
might be an outdoor event or festival. The image is signed with "Eleonora Jans 2008" in the bottom right corner.
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Resources

Introquctiop to
Applied Linear Algebra

Vectors, Mztrices, and | east Squares

Introduction to

LINEAR ALGEBRA

SIXTH EDITION

Gareth James - Daniela Witten - Trevor Hastie -
Robert Tibshirani - Jonathan Taylor

with Applications in Python

9 springer

Introduction to Applied Linear Algebra — Vectors, Matrices, and Least Squares
Stephen Boyvd and Lieven Vandenberghe

https://web.stanford.edu/~boyd/vmls/vmls.pdf

Introduction to Linear Algebra
Gilbert Strang

https://math.mit.edu/~gs/linearalgebra/ila6/indexila6.html

Introduction to Statistical Learning
James, Witten, Hastie, Tibshirani, Taylor

https://www.statlearning.com/

Vectors
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Linear
transformations

10:59

Matrix
multiplication
/ . _’

10:04
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transformations

4:46

Determinant

Inverse matrices
Rank
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Nonsquare matrices
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5 9
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Dot pr()(l“('tS
l)l lﬂ]jij,; - i

14:12

Cross products
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8:54

Cross products

as transformations

\
"

13:10

Cramer’s rule

&

12:12

Change of basis

12:51

Eigenvectors
Eigenvalues

M Az =3++/32-5=1313

Abstract vector
spaces
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