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What is a p-value?

e p-value: the probability of obtaining a result
at least as extreme as observed if H, is true.

— Null hypothesis (H,) is usually: chance/no effect

* P<0.05 does not necessarily indicate a
meaningful difference.

P> 0.05 does not necessarily indicate no
meaningful difference.



Outcomes of One Test
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Life Hack: the boy who cried wolf

1. Caused a type | error:
* townspeople thought there was a wolf when
there was not (False Positive)
2. Then caused a type Il error:
* townspeople thought there was no wolf when
there was (False Negative)



Controling Errors in One Test

Do Not
Reject Reject
False True
True Positive Negative
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False Positive Negative
(TP) (FN)

Significance Level (a) = P(FP)
Power=1—-P(FN)=1-p



Statistical Power

 The power of a test is the probability of
rejecting a false null hypothesis (1 — P(FP))

e Power varies based on the effect size and the
sample size.
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e Power increases with
sample size.

e Power increases with
effect size.

* Many studies are
underpowered.



What happens when we test more
than one hypothesis?



A motivational cartoon...
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Why is testing multiple hypotheses a
problem?



What is the distribution of p-values
under the null?

Histogram of p-values under the null
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What is the chance under the null of at
least one p-value < @ in m ind. tests?
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Outcomes of Many Tests

True

False

Do Not
Reject Reject
# False # True
Positives | Negatives
(FP) (TN)

# True # False
Positives Negatives
(TP) (FN)
r=+# m—r

reject nulls

MmO = # true nulls

m1 = # false nulls

m = # tests



What can we do?

* |n one test, a controls the family-wise error
rate (FWER), the probability of at least one
false positive :

P(FP > 0) < «

 Over all m tests, this is:
P(#FP>0) <«



Bonferroni Correction

To control FWER over m tests, adjust the p-value
threshold (a) we use:

aBonferroni = (1/ m

If a=.05 and 20 tests:
Olgonferroni = 0-05 /20 =0.0025

Or, equivalently, correct the p-values:
pBonferroni =P * 20



Bonferroni Correction Graph
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Proof

Let p4,...,p,, be the p-values for all tests
Let [, be the set of all mj true null hypotheses
We are interested in:

P(p; < % ) for at least oneiin I,

By Boole’s inequality, this is <:
Mmoo

a a
ZiEIO P(p; < E) = ZiEIOE :TO Sa



Problems with Bonferroni

Bonferroni correction is conservative
— Can use Holm-Bonferroni instead:

Q
P. < |
b m-+1—k

Bonferroni says little about the mix of TPs and FPs
in the set of hypotheses called significant.

If we expect that many tests should reject H,, we
may be fine with more than one FP.
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Many genes are likely to
be differentially expressed
between conditions.



Why not control # FPs in tests called

significant?

False Discovery Rate (FDR)
FP / (FP+TP)
VS.
False Positive Rate (FPR)
FP / (FP+TN)

True

False

Reject

Do Not
Reject

# False
Positives
(FP)

# True
Negatives
(TN)

# True
Positives
(TP)

# False
Negatives
(FN)

g-value: the FDR analog of the p-value




Benjamini-Hochberg Procedure

1. Rank p-values in ascending order: P(qy ... Pip).

2. For a given a, find largest k such that Py < n% Q.
3. Reject the null for all H(i)for i=1,..., k.
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Benjamini-Hochberg Procedure

1. Rank p-values in ascending order: P(qy ... Pip).

2. For a given a, find largest k such that Py < n% Q.
3. Reject the null for all H(i)for i=1,..., k.

* BH procedure is less conservative than Bonferroni
correction.

* In genomics, we often expect many rejections of the
null and can tolerate a few false positives.



BH Graphical Example
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Other useful metrics

Sensitivity, Recall, True Positive Rate
TP / (TP+FN)

True
Specificity, True Negative Rate
TN / (TN+FP)

Ho

False

Precision, Positive Predictive Value
TP / (TP+FP)

Reject

Do Not
Reject

# False
Positives
(FP)

# True
Negatives
(TN)

# True
Positives
(TP)

# False
Negatives
(FN)




Discussion

1. How can we account for correlation structure
among the results of our multiple tests?
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2. Should you perform multiple testing correction
for all the hypotheses you test in your life?



Tomorrow

 Examples of permutation and bootstrap
methods for jointly adjusting for multiple

testing

Home » Bioconductor 3.14 » Software Packages » multtest

rank 4472083 [l support 0/ 0] in Bioc > 16,5 years
build |warnings | updated before release | dependencies 14

DOI: 10.18129/B9.bioc.multtest ﬁ D

Resampling-based multiple hypothesis testing

Bioconductor version: Release (3.14)

Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including
empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error
rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR).
Several choices of bootstrap-based null distribution are implemented (centered, centered and scaled,
quantile-transformed). Single-step and step-wise methods are available. Tests based on a variety of t-
and F-statistics (including t-statistics based on regression parameters from linear and survival models as
well as those based on correlation parameters) are included. When probing hypotheses with t-statistics,
users may also select a potentially faster null distribution which is multivariate normal with mean zero
and variance covariance matrix derived from the vector influence function. Results are reported in terms
of adjusted p-values, confidence regions and test statistic cutoffs. The procedures are directly applicable
to identifying differentially expressed genes in DNA microarray experiments.

Author: Katherine S. Pollard, Houston N. Gilbert, Yongchao Ge, Sandra Taylor, Sandrine Dudoit
Maintainer: Katherine S. Pollard <katherine.pollard at gladstone.ucsf.edu>
Citation (from within R, enter citation("multtest™)):

Pollard KS, Dudoit S, van der Laan MJ (2005). Multiple Testing Procedures: R multtest Package and
Applications to Genomics, in Bioinformatics and Computational Biology Solutions Using R and
Bioconductor. Springer.



