Multiple Hypothesis
 Testing

Katie Pollard

BMI 206 docpollard.org/bmi206 October 12, 2016

Testing many hypotheses at once

Large multiplicity problem: thousands of hypotheses are tested simultaneously!

Increased chance of false positives.
Chance of at least one p -value $<\alpha$ for N independent tests is $1-(1-\alpha)^{N}$
\rightarrow converges to one as N increases.
e.g., For $\mathrm{N}=\mathrm{I}, 000$ and $\alpha=0.0 \mathrm{I}$, this chance is 0.9999568 !

Individual p-values of 0.01 no longer correspond to significant findings.

Need to adjust for multiple testing when assessing the statistical significance of the observed associations.

Multiple testing in RNA-seq

Comparison of fly and worm gene expression across developmental stages

Multiplicity on many levels:

- Two species
- Many stages
- Tissues vs. cell lines

Multiple testing in population genetics

Genomic regions with exceptionally high population differentiation identified in 91 I whole genomes

Multiplicity on many levels:

- Genome-wide
- SNPs, indels, SVs
- Several pairs of populations

Multiple testing in mass spec

Identifying human proteins that interact with each protein in the HIV genome

Interactions mean many tests:

- Tens of HIV proteins
- Thousands of human proteins
- Many thousands of potential protein-protein interactions

Components of a Multiple

 Hypothesis Test

 Hypothesis Test}
I. Parameters: quantity of interest
2. Null and alternative hypotheses: family of tests; statements about parameter values
3. Test statistics: quantify evidence
4. Error rate: control mistakes
5. Null distribution: assess significance (high dim)
6. Procedure: decision rule for all tests jointly

Errors in multiple testing

$$
\begin{array}{cc}
\begin{array}{c}
\text { \# non-rejected } \\
\text { hypotheses }
\end{array} & \begin{array}{c}
\text { \# rejected } \\
\text { hypotheses }
\end{array} \\
m_{0}-V_{n} & V_{n} \\
\text { Type I error } \\
U_{n} & m_{1}-U_{n} \\
\text { Type II error } & \\
m-R_{n} & m_{n}
\end{array}
$$

\# true null
hypotheses
\# false null
hypotheses

Type I error rates

- Per family error rate (PFER): Expected number of false positives.
PFER = E(Vn)
- Per comparison error rate (PCER): Expected rate of false positives.

$$
\text { PCER }=\mathrm{E}(\mathrm{Vn}) / \mathrm{m}
$$

Type I error rates

- Family-wise error rate (FWER): Probability of at least one false positive.

$$
\text { FWER }=P(V n>0)
$$

- Generalized FWER (gFWER): Probability of at least $\mathrm{k}+\mathrm{l}$ false positives.

$$
g \operatorname{FWER}(\mathrm{k})=\mathrm{P}(\mathrm{Vn}>\mathrm{k})
$$

Type I error rates

- False discovery rate (FDR): Expected proportion of false positives.

$$
\mathrm{FDR}=\mathrm{E}(\mathrm{Vn} / \mathrm{Rn})
$$

- False discovery proportion (FDP): Probability that the proportion of false positives is at least q.

$$
\operatorname{FDP}(q)=P(V n / R n>q)
$$

Null distribution for multiple testing

Joint distribution of the vector of test statistics if the null hypotheses were all true.
Used to convert test statistics to p-values.
Multiple testing p-values can be compared across tests, whereas statistics may be in different scales.

Different types:
same for all tests?
marginal vs. joint
parametric vs. non-parametric

Marginal null distributions

- Parametric (a.k.a. tabled distributions)

Normal distributions
Student's t-distribution
F distribution
Wilcoxon/Mann-Whitney U
z-statistics
t-statistics
F-statistics
U-statistics

- Non-parametric (i.e., resampling based)

Permutation ($2+$ groups or continuous)
Bootstrap (various types)

Permutations

- Randomize group labels, positions, locations, ...
- Estimates a distribution that is the pool of the groups (e.g., same mean, same variance, etc)
- Usually easy to implement
- Some issues to consider
- What to permute is not always obvious
- Permuting into regions that cannot be observed
- Strict null distribution because all parameters are different from the observed data, potentially including parameters other than in null hypothesis

Implementing a permutation test

- Simulate two vectors of numbers ($\mathrm{n}=10$ random normal variables per group).
- Perform a parametric t-test.
- Generate $b=100$ permutations.
- Compute a t-statistic for each permutation.
- Calculate a permutation p-value.
- Compare parametric and permutation results.
- Repeat for different values of n (possibly unbalanced) and b. Also try different means in the two groups.

Bootstrap

- Resampling observed data with replacement estimates the variability in the empirical distribution
- Statistics over bootstrap iterations will have a range of values, providing an empirical test statistics distribution
- If this can be adjusted so the null hypothesis holds, it provides a suitable test statistics null distribution
- Can be easy, e.g., make means the same in each group by computing sample means and subtracting
- Need to think explicitly about the null hypothesis to make this adjustment to the bootstrap
- Does not involve changing the labels, positions, etc.

Implementing a bootstrap test

- Simulate two vectors of numbers ($\mathrm{n}=10$ random normal variables per group).
- Generate $b=100$ bootstrap samples. Standardize to have mean zero in each group.
- Compute a t-statistic for each bootstrap.
- Calculate a bootstrap p-value.
- Compare parametric, permutation, and bootstrap results.
- Repeat for different values of n (possibly unbalanced) and b. Also try different means in the two groups.

Joint null distributions

- Parametric (a.k.a. tabled distributions)

Multivariate Normal distributions
Multivariate distribution of F-statistics

- Non-parametric (i.e., resampling based)

Permutation ($2+$ groups or continuous)
Bootstrap (various types)
multtest package
MTP function

Resampling observations jointly

- Permutations
- Think about the sampling unit
- Permute label, position, location for vector of observed variables for each sampling unit
- Scrambling the variables is a common mistake
- Bootstrap
- Resample vectors of variables with replacement
- Adjust the joint bootstrap distribution so that the null hypothesis holds

Implementing multivariate resampling

- Simulate two vectors of numbers ($\mathrm{n}=10$ random normal variables per group) 50 times independently. Store as a 50×20 matrix.
- Generate $\mathrm{b}=100$ permutation and bootstrap samples. Standardize the bootstrap data to have mean zero in each group (50 rows).
- Compute a t-statistic for each row.
- Calculate parametric, permutation and bootstrap p-values. Compare results.
- Repeat for different means in the two groups and with correlation between the rows.

Multiple Testing Procedures

Goal: Given test statistics, an error rate, significance level \& a high-dimensional null distribution, make a rejection decision for every test.

- Produces a set of rejected hypotheses
- Equivalently, compute adjusted p-values
- Related to tail probabilities of the null distribution, but must account for all the other tests so that error rate is controlled
- Value of multiple testing error rate if reject for all statistics at least this significant

How to get adjusted p-values?

Two different approaches to control multiple testing error rate (e.g., FWER or FDR):
I. Marginal methods that have two steps

- Get usual p-values, i.e., tail probabilities under each test's null distribution (marginal or joint)
- Adjust these probabilities based on the p-values of all other tests

2. Joint methods directly compute adjusted p-values from the joint null distribution

Types of marginal methods

- Single-step: Same p-value adjustment for all hypotheses.
- Step-wise: Adjustments depend on observed data (test statistics).
- Step-down = start with most significant, reduce adjustment at each step, stop at first null hypothesis not rejected
- Step-up = start with least significant, increase adjustment at each step, stop at first rejected null hypothesis

FWER controlling p-value adjustment

Name	Type	Adjustment
Bonferroni	Single-step	α / m
Sidak (ss)	Single-step	I-(I-
Holm	Step-down	α
Sidak (sd)	Step-down	I-(I-
Hochberg	Step-up	α

$\mathrm{r}_{\mathrm{j}}=$ order statistics (ranks of test statistics)

FDR controlling p-value adjustment

Name	Type	Adjustment
 Hochberg	Step-up	r
 Yekutieli	Step-up	r
Storey	Step-up	Estimates pFDR and q-value

qvalue package
multtest package mt . rawp2adjp function

Dependence Assumptions

Independence of test statistics
Bonferroni
Benjamini \& Hochberg (or PRD)
Storey
Positive orthant dependent statistics
Sidak (both versions)
P-values satisfy Simes inequality

$$
P\left(p_{r_{j}}>\alpha r_{j} / m\right) \geq 1-\alpha
$$

Hochberg (also assumes independence)

Joint methods for adjusted p-values

With the joint null distribution of the test statistics, direct control of Type I error rates is possible.

$\mathrm{b}=\mathrm{l}$	$2 \ldots$	$\ldots \mathrm{~B}$
$T_{n}^{1}(1)$	$T_{n}^{2}(1)$	$T_{n}^{B}(1)$
$T_{n}^{1}(2)$	$T_{n}^{2}(2)$	$T_{n}^{B}(2)$

Estimated test statistics null distribution

Joint methods for adjusted p-values

Name	Error Rate	Type	Details
ss.maxT	FWER	Single-step	Common cut-off: based on quantiles of max statistics
ss.minP	FWER	Single-step	Common quantile based on quantiles of min p-values
sd.maxT	FWER	Step-down	Gene-specific cut-offs based on max over subsets of T
sd.minP	FWER	Step-down	Gene-specific qtiles: based on min over subsets of P
ss.T(k+I)	gFWER	Single-step	Common cut-off: based on k + Ist largest T
ss.P(k+I)	gFWER	Single-step	Common qtile: based on $\mathrm{k}+\mathrm{Ist}$ smallest P

Multiple testing summary

- Completely marginal test

Marginal p-values from tabled distribution or resampling one gene at a time

Adjust with a marginal method

- Essentially marginal test

Marginal p-values from joint distribution
Adjust with marginal method

- Completely joint test

Marginal and adjusted p-values from joint distribution (also test statistic cut-offs)

