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Testing many hypotheses at once
• Large multiplicity problem: thousands of 

hypotheses are tested simultaneously!	
– Increased chance of false positives. 	

– Chance of at least one p-value < α for N independent 
tests is   	

   	è converges to one as N increases. 	

   	e.g., For N=1,000 and α = 0.01, this chance is 
0.9999568!	

– Individual p-values of 0.01 no longer correspond to 
significant findings.	
!

• Need to adjust for multiple testing when assessing 
the statistical significance of the observed 
associations.

€ 

1− (1−α)N



Multiple testing in RNA-seq

Li et al. (2014) Genome Research

Comparison of fly and worm 
gene expression across 
developmental stages

Multiplicity on many levels:	
• Two species	
• Many stages	
• Tissues vs. cell lines



Multiple testing in population genetics

Genomic regions with exceptionally high population 
differentiation identified in 911 whole genomes

Colonna et al. (2014) Genome Biology

Multiplicity on many levels: 	
• Genome-wide 	
• SNPs, indels, SVs	
• Several pairs of populations



Multiple testing in mass spec

Jager et al. (2011) Nature, 481: 365-370

Interactions mean many tests: 	
• Tens of HIV proteins 	
• Thousands of human proteins	
• Many thousands of potential 
protein-protein interactions

Identifying human proteins that 
interact with each protein in 

the HIV genome



Components of a Multiple 
Hypothesis Test

1. Parameters: quantity of interest	

2. Null and alternative hypotheses: family of 
tests; statements about parameter values	

3. Test statistics: quantify evidence	

4. Error rate: control mistakes	

5. Null distribution: assess significance (high dim)	

6. Procedure: decision rule for all tests jointly



Errors in multiple testing

True Positives

True Negatives False Positives

False Negatives



Type I error rates

• Per family error rate (PFER): Expected number 
of false positives.	

PFER = E(Vn)	

!

• Per comparison error rate (PCER): Expected 
rate of false positives.	

PCER = E(Vn)/m



• Family-wise error rate (FWER): Probability of at 
least one false positive.	

FWER = P(Vn>0)	

!

• Generalized FWER (gFWER): Probability of at 
least k+1 false positives.	

gFWER(k) = P(Vn>k)

Type I error rates



• False discovery rate (FDR): Expected 
proportion of false positives.	

• FDR = E(Vn/Rn)	

!
• False discovery proportion (FDP): Probability 

that the proportion of false positives is at least q.	

FDP(q) = P(Vn/Rn>q)	

Type I error rates



Null distribution for multiple testing
• Joint distribution of the vector of test statistics if 

the null hypotheses were all true.	

• Used to convert test statistics to p-values.	

• Multiple testing p-values can be compared across 
tests, whereas statistics may be in different scales.	

• Different types:	

– same for all tests?	

– marginal vs. joint 	

– parametric vs. non-parametric



Marginal null distributions

• Parametric (a.k.a. tabled distributions)	

– Normal distributions	

– Student’s t-distribution	

– F distribution	

–Wilcoxon/Mann-Whitney U 	

• Non-parametric (i.e., resampling based)	

– Permutation (2+ groups or continuous)	

– Bootstrap (various types)

t-statistics

F-statistics

U-statistics

z-statistics



Permutations
• Randomize group labels, positions, locations, ...	

- Estimates a distribution that is the pool of the 
groups (e.g., same mean, same variance, etc) 	

- Usually easy to implement 	

• Some issues to consider	

- What to permute is not always obvious	

- Permuting into regions that cannot be observed	

- Strict null distribution because all parameters are 
different from the observed data, potentially 
including parameters other than in null hypothesis



• Simulate two vectors of numbers (n=10 
random normal variables per group).	

• Perform a parametric t-test.	

• Generate b=100 permutations.	

• Compute a t-statistic for each permutation.	

• Calculate a permutation p-value.	

• Compare parametric and permutation results.	

• Repeat for different values of n (possibly 
unbalanced) and b.  Also try different means in 
the two groups.

Implementing a permutation test



Bootstrap
• Resampling observed data with replacement estimates 

the variability in the empirical distribution	

• Statistics over bootstrap iterations will have a range of 
values, providing an empirical test statistics distribution	

• If this can be adjusted so the null hypothesis holds, it 
provides a suitable test statistics null distribution	

- Can be easy, e.g., make means the same in each 
group by computing sample means and subtracting	

- Need to think explicitly about the null hypothesis 
to make this adjustment to the bootstrap	

- Does not involve changing the labels, positions, etc.



• Simulate two vectors of numbers (n=10 
random normal variables per group).	

• Generate b=100 bootstrap samples. 
Standardize to have mean zero in each group. 	

• Compute a t-statistic for each bootstrap.	

• Calculate a bootstrap p-value.	

• Compare parametric, permutation, and 
bootstrap results.	

• Repeat for different values of n (possibly 
unbalanced) and b.  Also try different means in 
the two groups.

Implementing a bootstrap test



Joint null distributions

• Parametric (a.k.a. tabled distributions)	

– Multivariate Normal distributions	

– Multivariate distribution of F-statistics	

• Non-parametric (i.e., resampling based)	

– Permutation (2+ groups or continuous)	

– Bootstrap (various types)

multtest package	
MTP function



Resampling observations jointly
• Permutations	

- Think about the sampling unit	

- Permute label, position, location for vector of 
observed variables for each sampling unit 	

- Scrambling the variables is a common mistake	

• Bootstrap	

- Resample vectors of variables with replacement	

- Adjust the joint bootstrap distribution so that the 
null hypothesis holds



• Simulate two vectors of numbers (n=10 
random normal variables per group) 50 times 
independently. Store as a 50 x 20 matrix.	

• Generate b=100 permutation and bootstrap 
samples. Standardize the bootstrap data to 
have mean zero in each group (50 rows). 	

• Compute a t-statistic for each row.	

• Calculate parametric, permutation and 
bootstrap p-values. Compare results.	

• Repeat for different means in the two groups 
and with correlation between the rows. 

Implementing multivariate resampling



Multiple Testing Procedures
Goal: Given test statistics, an error rate, significance 

level & a high-dimensional null distribution, make a 
rejection decision for every test.	

• Produces a set of rejected hypotheses	

• Equivalently, compute adjusted p-values	

- Related to tail probabilities of the null 
distribution, but must account for all the 
other tests so that error rate is controlled	

- Value of multiple testing error rate if reject 
for all statistics at least this significant



How to get adjusted p-values?

Two different approaches to control multiple testing 
error rate (e.g., FWER or FDR):	

1.  Marginal methods that have two steps	

• Get usual p-values, i.e., tail probabilities under 
each test’s null distribution (marginal or joint) 	

• Adjust these probabilities based on the p-values 
of all other tests	

2. Joint methods directly compute adjusted p-values 
from the joint null distribution



Types of marginal methods

• Single-step: Same p-value adjustment for all 
hypotheses. 	

• Step-wise: Adjustments depend on observed 
data (test statistics). 	

– Step-down = start with most significant, reduce 
adjustment at each step, stop at first null 
hypothesis not rejected	

– Step-up = start with least significant, increase 
adjustment at each step, stop at first rejected 
null hypothesis



FWER controlling p-value adjustment

Name Type Adjustment

Bonferroni Single-step α/m

Sidak (ss) Single-step 1-(1-

Holm Step-down α

Sidak (sd) Step-down 1-(1-

Hochberg Step-up α

rj = order statistics (ranks of test statistics)



Name Type Adjustment

Benjamini & 
Hochberg Step-up r

Benjamini & 
Yekutieli Step-up r

Storey Step-up Estimates pFDR 
and q-value

qvalue package	
multtest package	

mt.rawp2adjp function

FDR controlling p-value adjustment



• Independence of test statistics	

– Bonferroni	

– Benjamini & Hochberg (or PRD)	

– Storey	

• Positive orthant dependent statistics	

– Sidak (both versions)	

• P-values satisfy Simes inequality	

!
– Hochberg (also assumes independence)

Dependence Assumptions

€ 

P(prj >αrj /m) ≥1−α



With the joint null distribution of the test statistics, 
direct control of Type I error rates is possible. 

Joint methods for adjusted p-values
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P-values

Joint	
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Take max of 
each column



Joint methods for adjusted p-values

Name Error Rate Type Details

ss.maxT FWER Single-step Common cut-off: based on 
quantiles of max statistics

ss.minP FWER Single-step Common quantile: based on 
quantiles of min p-values

sd.maxT FWER Step-down Gene-specific cut-offs: based on 
max over subsets of T

sd.minP FWER Step-down Gene-specific qtiles: based on 
min over subsets of P

ss.T(k+1) gFWER Single-step Common cut-off: based on k
+1st largest T

ss.P(k+1) gFWER Single-step Common qtile: based on k+1st 
smallest P



Multiple testing summary
• Completely marginal test	

– Marginal p-values from tabled distribution or 
resampling one gene at a time	

– Adjust with a marginal method	

• Essentially marginal test	

– Marginal p-values from joint distribution	

– Adjust with marginal method	

• Completely joint test	

– Marginal and adjusted p-values from joint 
distribution (also test statistic cut-offs)
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