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Testing many hypotheses at once

Large multiplicity problem: thousands of
hypotheses are tested simultaneously!

Increased chance of false positives.

Chance of at least one p-value < o for N independent

tests is 1-(1- a)N

=» converges to one as N increases.

e.g., For N=1,000 and a = 0.01, this chance is
0.9999568!

Individual p-values of 0.01 no longer correspond to
significant findings.

Need to adjust for multiple testing when assessing
the statistical significance of the observed
associations.



Multiple testing in RNA-seq

gene expression across
developmental stages

Multiplicity on many levels:
* Two species

* Many stages

* Tissues vs. cell lines

Li et al. (2014) Genome Research



Multiple testing in population genetics
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Genomic regions with exceptionally high population
differentiation identified in 91| whole genomes

Multiplicity on many levels:
e Genome-wide
* SNPs, indels, SVs

* Several pairs of populations

Colonna et al. (2014) Genome Biology



Multiple testing in mass spec

|dentifying human proteins that
interact with each protein in
the HIV genome

Interactions mean many tests:
* Tens of HIV proteins

* Thousands of human proteins
* Many thousands of potential
protein-protein interactions

Jager et al. (201 1) Nature, 481:365-370



Components of a Multiple
Hypothesis Test

Parameters: quantity of interest

2. Null and alternative hypotheses: family of
tests; statements about parameter values

3. Test statistics: quantify evidence

4. Error rate: control mistakes

5. Null distribution: assess significance (high dim)

6. Procedure: decision rule for all tests jointly




Errors in multiple testing

# non-rejected # rejected

hypotheses hypotheses

# true null mo — V., "

hypotheses Type I error

# false null L my — U

hypotheses | Type II error

m — R,

Adapted from Benjamini & Hochberg (1995).




Type | error rates

* Per family error rate (PFER): Expected number
of false positives.

PFER = E(Vn)

 Per comparison error rate (PCER): Expected
rate of false positives.

PCER = E(Vn)/m



Type | error rates

* Family-wise error rate (FWER): Probability of at
least one false positive.

FWER = P(Vn>0)

* Generalized FWER (gFWER): Probability of at

least k+ 1| false positives.

sFWER (k) = P(Vn>k)



Type | error rates

* False discovery rate (FDR): Expected
proportion of false positives.

FDR = E(Vn/Rn)

» False discovery proportion (FDP): Probability
that the proportion of false positives is at least q.

FDP(q) = P(Vn/Rn>q)



Null distribution for multiple testing

Joint distribution of the vector of test statistics if
the null hypotheses were all true.

Used to convert test statistics to p-values.

Multiple testing p-values can be compared across
tests, whereas statistics may be in different scales.

Different types:
same for all tests!?
marginal vs. joint

parametric vs. non-parametric



Marginal null distributions

* Parametric (a.k.a. tabled distributions)

Normal distributions Z-statistics
Student’s t-distribution t-statistics
F distribution F-statistics

Wilcoxon/Mann-Whitney U U-statistics
* Non-parametric (i.e., resampling based)
Permutation (2+ groups or continuous)

Bootstrap (various types)



Permutations

* Randomize group labels, positions, locations, ...

- Estimates a distribution that is the pool of the
groups (e.g., same mean, same variance, etc)

- Usually easy to implement
* Some issues to consider
- What to permute is not always obvious
- Permuting into regions that cannot be observed

- Strict null distribution because all parameters are
different from the observed data, potentially
including parameters other than in null hypothesis



Implementing a permutation test

® Simulate two vectors of numbers (n=10
random normal variables per group).

® Perform a parametric t-test.

® Generate b=100 permutations.

® Compute a t-statistic for each permutation.

® C(Calculate a permutation p-value.

® Compare parametric and permutation results.

® Repeat for different values of n (possibly
unbalanced) and b. Also try different means in
the two groups.



Bootstrap

* Resampling observed data with replacement estimates
the variability in the empirical distribution

* Statistics over bootstrap iterations will have a range of
values, providing an empirical test statistics distribution

* If this can be adjusted so the null hypothesis holds, it
provides a suitable test statistics null distribution

- Can be easy, e.g., make means the same in each
group by computing sample means and subtracting

- Need to think explicitly about the null hypothesis
to make this adjustment to the bootstrap

- Does not involve changing the labels, positions, etc.



Implementing a bootstrap test

Simulate two vectors of numbers (n=10
random normal variables per group).

Generate b=100 bootstrap samples.
Standardize to have mean zero in each group.

Compute a t-statistic for each bootstrap.
Calculate a bootstrap p-value.

Compare parametric, permutation, and
bootstrap results.

Repeat for different values of n (possibly
unbalanced) and b. Also try different means in
the two groups.



Joint null distributions

* Parametric (a.k.a. tabled distributions)
Multivariate Normal distributions
Multivariate distribution of F-statistics

* Non-parametric (i.e., resampling based)
Permutation (2+ groups or continuous)
Bootstrap (various types)

package
MTP function



Resampling observations jointly

* Permutations
- Think about the sampling unit

- Permute label, position, location for vector of
observed variables for each sampling unit

- Scrambling the variables is a common mistake
* Bootstrap
- Resample vectors of variables with replacement

- Adjust the joint bootstrap distribution so that the
null hypothesis holds



Implementing multivariate resampling

® Simulate two vectors of numbers (n=10
random normal variables per group) 50 times
independently. Store as a 50 x 20 matrix.

® Generate b=100 permutation and bootstrap
samples. Standardize the bootstrap data to
have mean zero in each group (50 rows).

e Compute a t-statistic for each row.

® Calculate parametric, permutation and
bootstrap p-values. Compare results.

® Repeat for different means in the two groups
and with correlation between the rows.




Multiple Testing Procedures

Goal: Given test statistics, an error rate, significance
level & a high-dimensional null distribution, make a
rejection decision for every test.

* Produces a set of rejected hypotheses
* Equivalently, compute adjusted p-values

- Related to tail probabilities of the null
distribution, but must account for all the
other tests so that error rate is controlled

- Value of multiple testing error rate if reject
for all statistics at least this significant



How to get adjusted p-values!?

Two different approaches to control multiple testing
error rate (e.g., FWWER or FDR):

|.  Marginal methods that have two steps

e Get usual p-values, i.e., tail probabilities under
each test’s null distribution (marginal or joint)

* Adjust these probabilities based on the p-values
of all other tests

2. Joint methods directly compute adjusted p-values
from the joint null distribution



Types of marginal methods

» Single-step: Same p-value adjustment for all
hypotheses.

» Step-wise: Adjustments depend on observed
data (test statistics).

— Step-down = start with most significant, reduce
adjustment at each step, stop at first null
hypothesis not rejected

— Step-up = start with least significant, increase
adjustment at each step, stop at first rejected
null hypothesis



FWER controlling p-value adjustment

Name Type Adjustment
Bonferroni Single-step o/m
Sidak (ss) Single-step |-(1-

Holm Step-down Qo
Sidak (sd) Step-down I-(1-
Hochberg Step-up QL

r; = order statistics (ranks of test statistics)




FDR controlling p-value adjustment

Name Type Adjustment
Benjamini & Steb-u ,
Hochberg P=HP
Benjamini & Steb-u )
Yekutieli P~HP
Estimates pFDR
Storey Step-up and q-value
package
package
mt . rawp2adijp function



Dependence Assumptions

Independence of test statistics
Bonferroni
Benjamini & Hochberg (or PRD)
Storey

Positive orthant dependent statistics

Sidak (both versions)

P-values satisfy Simes inequality

P(Prj >ar,/m)zl-a

Hochberg (also assumes independence)



Joint methods for adjusted p-values

With the joint null distribution of the test statistics,
direct control of Type | error rates is possible.

b= 2 ... ...B
Eay Ll T, (1)
T.(2) T(2) T’ (2)

Estimated test statistics null distribution [ SRS

T,(m) T:(m)

Take max of

: -
each column man(Tnl(]))--- Join

P-values



Joint methods for adjusted p-values

Name [ Error Rate Type Details
ss.maxT FWER SINGle-SteP | oo of o soaior
ss.minP FWER Single-step | “mincnimin e
d T FWER S d Gene-specific cut-offs: based on
Sd.MmaxX te P' own max over subsets of T
sd.minP FWER Step-down | O P ey
. Common cut-off: based on k
SS.T(I(+ I ) gFWER S|ng|e'5tep +Ist largest T
ss.P(k+1) | gFWER Single-step | “" Heiony o




Multiple testing summary

e Completely marginal test

Marginal p-values from tabled distribution or
resampling one gene at a time

Adjust with a marginal method
 Essentially marginal test

Marginal p-values from joint distribution

ZO0O—4A>»-H4C9vX00O

Adjust with marginal method
e Completely joint test

Marginal and adjusted p-values from joint
distribution (also test statistic cut-offs)



