Reconstructing 3-D Genome Configurations: How and Why

Mark Segal
Center for Bioinformatics \& Molecular Biostatistics UCSF Divisions of Bioinformatics \&Biostatistics

BMI206 - Statistical Methods for Bioinformatics November 21, 2016

Oncogenesis via neighborhood disruption

Outline

- Why 3D genome architecture (theory)
- Chromatin conformation capture assays
- How 3D structure is inferred:
- algorithm choices and issues
- reproducibility / accuracy assessment
- Why 3D genome architecture (practice)
- Further possibilities

Importance of 3D Architecture

- Gene regulation:
- co-localization of co-expressed genes into transcription factories
- positioning of distal control elements
- Translocations / gene fusions:
- 20% of human cancer morbidity
- 3D structure "probably pivotal"

Observing / Inferring 3D Structure

- Challenging at even modest resolutions:
- genomes are highly condensed
- genomes are dynamic, variable
- traditional assays are low throughput and low resolution (FISH coarse)
- Recently devised suite of Chromatin Conformation Capture techniques has revolutionized 3D structure elicitation

3C / 4C / 5C / Hi-C / TCC

Bias Correction / Normalization

B

D

E

Output: Contact / Interaction Maps

Also inter-chromosomal maps. Assume m total loci after possible binning.

From Interactions to 3D Structure

- Objective: given an interaction matrix F, obtain a 3D structure (or an ensemble thereof) the between-loci pairwise distances of which are highly correlated with the corresponding interaction frequencies in F.
- Two broad classes of approach:
- Optimization / consensus procedures
- Ensemble / probabilistic procedures

Ensemble / Probabilistic Methods

- Ensemble motivation: assay performed on hundreds of thousands of cells -- single structure summary is misleading; providing a collection of solutions displays genomic structural variation.
- This reasoning is entirely aspirational: there is no basis for equating displayed variation to biology -- could be purely algorithmic.
- Much downstream analysis will require a single structure -- back to consensus.

Optimization / Consensus Methods

- Generally utilize two steps:
- convert F into a distance matrix D that captures expected pairwise distances
- differing strategies / assumptions
- sometimes interplay with second step
- learn / estimate 3D structure from D
- multi-dimensional scaling (MDS)
- weights, non-metric variants

Interactions to Distances I

- Can empirically relate intrachromosomal interactions to genomic distances
- Saccharomyces cerevisiae: every ~130 bp of packed chromatin has length 1 nm
- Provides a simple ruler for conversion of frequencies to physical distances
- Obtaining physical distances enables incorporation of biology based constraints into the subsequent MDS optimization step
- Duan et al Nature (2010)

Conversion to Physical Distances

Interactions to Distances II

- Empiric \& theoretic [polymer biophysics, fractal / equilibrium globules] results support power law relationship between F and D

$$
D \propto F^{-\alpha} ; \alpha>0
$$

- But index thereof can vary according to organism, resolution, cell cycle phase...
- Estimate index from data [cf NMDS]
- Zhang et al J Comp Bio (2013) ChromSDE Zou et al Genome Biology (2016) HSA

Basis for Power Law

UNFOLDED POLYMER

FOLDED POLYMER

- Lieberman-Aiden et al Science (2009)

ChromSDE Index Estimation

Interactions to Distances III

- Create weighted graph whose nodes are detected loci and length of link is inverse contact frequency
- Distance between loci is then length of the shortest path connecting them:
- Computed using Floyd-Warshall algorithm
- Can handle single cell Hi-C assays
- Derived distance purportedly robust
- Lense et al Nat Meth (2014) ShRec3D

1D Distances to 3D Structure I

- Minimize objective function that places (as much as possible) interacting loci at their expected distance apart (MDS):

$$
\min _{\left\{x_{i}, x_{j} \in R^{3}\right\}} \sum_{\left\{i, j \mid D_{i j}<\infty\right\}} \omega_{i j} \cdot\left(\left\|x_{i}-x_{j}\right\|-D_{i j}\right)^{2}
$$

- Benefit of obtaining physical distances D is provision for imposing biology based constraints.

Physical Distance Constraints

- All points in $1 \mu \mathrm{~m}$ sphere (yeast nucleus).
- Adjacent points within a given range.
- No two points on same chromosome can be closer than 30nm (chromatin fiber).
- Minimum distance between points on different chromosomes.
- rDNA repeats within the nucleolus.
- Centromeres cluster opposite nucleolus.

Drawbacks to using physical distances:

- Strong assumptions to obtain ruler
- Organism specific formulations
- Slow, delicate (interior point) optimization:
- with yeast loci spaced at 10 kb there are x 10^3 parameters, 10^6 constraints
- ~ 2.5 days to solve; not parallelizable
- Sensitivity to inputs, data: challenging

Structure Reproducibility

HindIII

EcoRI

Differing restriction libraries

Structure Reproducibility

$$
0.066^{2} \leq d^{2}(p, q) \leq 0.091^{2} \quad 0.066^{2} \leq d^{2}(p, q) \leq 0.08^{2}
$$

Differing adjacency constraints

1D Distances to 3D Structure II

- Minimize objective function that places (as much as possible) interacting loci at their expected distance apart (MDS):
$\min _{\left\{x_{i}, x_{j} \in R^{3}\right\}} \sum_{\left\{i, j \mid D_{i j}<\infty\right\}} \omega_{i j} \cdot\left(\left\|x_{i}-x_{j}\right\|-D_{i j}\right)^{2}$
- Penalty: $\lambda \sum\left\|x_{i}-x_{j}\right\|^{2}$

$$
\left\{i, j \mid D_{i j}=\infty\right\}
$$

- Non-interacting loci cannot be too close

1D Distances to 3D Structure II

- Nonconvex, nonlinear optimization: NP hard
- Existing methods use heuristics to solve:
- MCMC, Simulated annealing (IMP - Sali)
- By relaxing solution space from $R^{\wedge} 3$ to $R^{\wedge} m$ problem becomes convex semidefinite:
- Global minimizer in polynomial time
- Recover exact solution in noise-free setting
- Zhang et al J Comp Bio (2013) ChromSDE

1D Distances to 3D Structure II

- But ... computational considerations limit problem size: number of loci / resolution
- ChromSDE uses a sophisticated quadratic SDP solver that handles much larger problems ($m \sim 3000$) than general SDP solvers ($m \sim 200$)
- Corresponds to 1 Mb resolution for human
- Need 100 kb resolution to capture topological domains: highly self-interacting regions Dixon et al Nature (2012)
- This has resulted in
- single chromosome solutions: no whole genome insights Varoquaux et al Bioinformatics (2014)
- downsampling and/or simple organisms
- No 3D genomes for mouse, human
- ShRec3D exception ...
- Note: New in situ (intact nuclei) assay has improved contact map resolution to $\sim 1 \mathrm{~kb}$ revealing new domains Rao et al Cell (2014)

1D Distances to 3D Structure III

- ShRec3D advantages include speed, problem size capacity
- But no index estimation: ChromSDE, HSA
- Distances ascribed to zero, small frequencies ostensibly filtered but criteria for such filtering unclear
- Potentially big component of speed
- Purported insensitivity to index prescription

1D Distances to 3D Structure IV

- HSA advantages include handling multitrack data, use of starting configurations, built-in normalization

Two-Stage Hybrid Proposal

- Expand scope of existing methods to provide higher resolution, whole genome reconstructions
- Use ChromSDE or HSA per chromosome:
- 3D coordinates using intra-chromosomal counts [bulk of counts ~ 15-20 fold]
- Power law index
- Stitch together using inter-chromosomal counts [bulk of interacting pairs ~ 10 fold]

Sample (select?) n_{k} points from ChromSDE solution for chromosome k. Let $n=\sum n_{k}$

Intra-chromosomal inter-point distances obtained from 3D coordinates hybrid algorithm

Inter-chromosomal inter-point distances: $D_{i j}=\left(F_{i j}\right)^{-\sqrt{\alpha_{k} \cdot \alpha_{k^{\prime}}}} \quad i \in \operatorname{Chr}_{k}, j \in \operatorname{Chr}_{k^{\prime}}$

Configuration based on $D_{n \times n}$ via (N)MDS
Map original ChromSDE solutions to the configuration via Procrustes transformation

Lymphoblast Reconstruction

- Chr1
- Chr2
- Chr3
- Chr4
- Chr5
- Chr6
- Chr7
- Chr8
- Chr9
- Chr10
- Chr11
- Chr12
- Chr13
- Chr14
- Chr15
- Chr16
- Chr17
-_Chr18
- Chr19
- Chr20
- Chr21
- Chr22
- ChrX

Evaluating Sampling Impact

- No real handle on accuracy:
- known properties, FISH landmarks
- crude**; only individual chromosomes
- Assessing reproducibility also difficult:
- Differing REs construed as replicates
- Inference: permutation, null-referent dns Segal et al Biostatistics (2014)
- In situ Hi-C provides genuine replicates for a range of cell-lines and resolutions

Reproducibility: In situ 1Mb

Why 3D Reconstructions

- Improves on identifying co-localized functional elements versus contact maps Capurso, Segal BMC Genomics (2014)
- multi-way versus pairwise
- borrowed strength from contiguity
- Can readily superpose genome-indexed attributes -- problematic for contact pairs
- Find focal extrema: e.g. transcription factories, peripheral heterochromatic regions

Yeast with ChIP-Seq Overlays

Swi6

Pol2Ser5p

Tup I

Bump-Hunting

Function f; covariates \mathbf{x}. Goal: find covariate space subregions \mathcal{R} st $\bar{f}_{\mathcal{R}}=\operatorname{ave}_{\mathbf{x} \in \mathcal{R}} f(\mathbf{x}) \gg \bar{f}$
$\mathbf{x}=(x, y, z):$ coordinates; $f:$ ChIP-Seq score
Want interpretable \mathcal{R} : impose $\mathcal{R}=\bigcup_{k=1}^{K} \mathcal{B}_{k}$; where each \mathcal{B}_{k} is a "box": $\mathcal{B}_{k}=\bigotimes\left[a_{j k}, b_{j k}\right]$

Two-phase strategy used to find good boxes: peeling - remove small unimportant regions; pasting - enlarge boundaries of resultant box

Friedman, Fisher Stat \& Comp (I 999) R pkg: prim

ChIP-Seq: Yeast, swi6

Park et al Plos One (2013)

min_beads $=25$
\# boxes = 670
\# sig $=10$
\# sig \& (min_chr > 0.2) $=6$

box_id	nbeads mean out	p adj	min chr	
18	45	0.514	$6.71 \mathrm{e}-03$	0.533
160	25	0.894	$6.71 \mathrm{e}-03$	0.520
44	25	0.671	$6.71 \mathrm{e}-03$	0.440
60	25	0.785	$6.71 \mathrm{e}-03$	0.400
1	25	1.081	$6.71 \mathrm{e}-03$	0.080
87	25	0.665	$1.33 \mathrm{e}-02$	0.000
25	25	0.652	$1.99 \mathrm{e}-02$	0.560
42	25	0.651	$1.99 \mathrm{e}-02$	0.360
11	29	0.596	$3.31 \mathrm{e}-02$	0.000
125	26	0.645	$4.63 \mathrm{e}-02$	0.000

swi6_minbeads25_box18
3 regions from 3 chromosomes

```
chrlI: 251 kB - 252 kB (3 beads)
chrVIII: 114 kB - 124 kB (21 beads)
chrXIII: 259 kB - 270 kB (21 beads)
```


SOD2

superoxide dismutase (reactive oxygen ROS)

GLO1 glyoxylase (methylglyoxal MG)

Downstream Analysis

- Each of the regions in box_18 contains a gene (FLR1, SOD2, GLO1) that becomes expressed in response to toxic compounds (fungicides, ROS, MG). The genes are:
- Functionally similar
- Repressed
- Physically co-localized
- Potentially poised for co-activation
- Do they share a transcription factor??

Yap1 Motif Finding in box18 regions

$$
\begin{array}{lll}
\text { chrII: } 251 \mathrm{kB}-252 \mathrm{kB} & \text { (} 3 \text { beads) } \\
\text { chrVIII: } 114 \mathrm{kB}-124 \mathrm{kB} & \text { (21 beads) } \\
\text { chrXIII: } 259 \mathrm{kB}-270 \mathrm{kB} & \text { (21 beads) }
\end{array}
$$

Position Frequency Matrix for Foat et. al. YAP1_D:

| A | 0.30 | 0.11 | 0.01 | 0.97 | 0.02 | 0.12 | 0.97 | 0.88 | 0.15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | 0.69 | 0.01 | 0.01 | 0.01 | 0.92 | 0.01 | 0.01 | 0.08 | 0.07 |
| G | 0.01 | 0.06 | 0.58 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.25 |
| T | 0.01 | 0.82 | 0.40 | 0.01 | 0.04 | 0.87 | 0.01 | 0.03 | 0.53 |

The MEME Suite

Motif-based sequence analysis tools

Find Individual Motif
Occurences

Downstream Analysis

- FLR1, SOD2, GLO1 are activated by the same transcription factor Yap1
- "The S. cerevisiae transcription factor Yap1 plays an important role in oxidative stress response and multidrug resistance by activating target genes involved in cellular detoxification."
- Nguyen et al J Biol Chem (2001)

PRIM_Swi6_box18
chrVIII

Genes

\square

$$
p=9.9 \times 10^{-4}
$$

b

C

Varoquaux

MDS
MDS + Poisson
Explicit Factor
Matrix Balance
Matrix Balance

Reconstruction-free Hotspots

- Considerable uncertainty still surrounds inferred 3D genome reconstructions
- Developing methods to elicit hotspots without requiring a reconstruction desirable
- Problematic since hotspots are critically dependent on 3D proximity

Reconstruction-free Hotspots

Distribute response Y according to contacts F :
$\tilde{Y}_{i}=\sum_{j \in \mathcal{S}} g\left(F_{i j}, Y_{j}\right) \rightarrow \sum_{j \in \mathcal{S}} F_{i j} \cdot Y_{j}$
Large $F \Longrightarrow$ small D : proximal upweighting
Further control - mimic $\mathcal{B}_{k}-$ through refining \mathcal{S}
Rank \tilde{Y}_{i} s; inference via permutation

Future Work

- Refining, tuning, accelerating MDS, others
- Sampling strategies for two-stage algorithm:
- Bi-clustering to optimize inter-chromosomal information
- Evaluating reconstruction accuracy and reproducibility:
- Multi-chromosome, multi-plex FISH
- Generating null referent distributions

Future Work

- Rotation invariant response analyses:
- tuning nearest neighbor methods
- recursive partitioning with hyperplanes
- persistence homology: Betti numbers, barcodes of excursion sets
- Methodology for reconstruction-free hotspots
- Design, analysis and reconstruction for single cell and in situ assays:
- replicates, perturbations, time-course

