Reconstructing 3-D Genome Configurations: How and Why

Mark Segal Center for Bioinformatics & Molecular Biostatistics UCSF Divisions of Bioinformatics &Biostatistics

Center for Bioinformatics & Molecular Biostatistics

BMI206 - Statistical Methods for Bioinformatics November 21, 2016

Oncogenesis via neighborhood disruption

Outline

- Why 3D genome architecture (theory)
- Chromatin conformation capture assays
- How 3D structure is inferred:
 - algorithm choices and issues
 - reproducibility / accuracy assessment
- Why 3D genome architecture (practice)
- Further possibilities

Importance of 3D Architecture

- Gene regulation:
 - co-localization of co-expressed genes into transcription factories
 - positioning of distal control elements
- Translocations / gene fusions:
 - 20% of human cancer morbidity
 - 3D structure "probably pivotal"

Observing / Inferring 3D Structure

- Challenging at even modest resolutions:
 - genomes are highly condensed
 - genomes are dynamic, variable
 - traditional assays are low throughput and low resolution (FISH coarse)
- Recently devised suite of Chromatin Conformation Capture techniques has revolutionized 3D structure elicitation

3C / 4C / 5C / Hi-C / TCC

Bias Correction / Normalization

Output: Contact / Interaction Maps

Also *inter*-chromosomal maps. Assume *m* total loci after possible binning.

From Interactions to 3D Structure

- Objective: given an interaction matrix *F*, obtain a 3D structure (or an ensemble thereof) the between-loci pairwise distances of which are highly correlated with the corresponding interaction frequencies in *F*.
- Two broad classes of approach:
 - Optimization / consensus procedures
 - Ensemble / probabilistic procedures

Ensemble / Probabilistic Methods

- Ensemble motivation: assay performed on hundreds of thousands of cells -- single structure summary is misleading; providing a collection of solutions displays genomic structural variation.
- This reasoning is entirely aspirational: there is no basis for equating displayed variation to biology -- could be purely algorithmic.
- Much downstream analysis will require a single structure -- back to consensus.

Optimization / Consensus Methods

- Generally utilize two steps:
 - convert *F* into a distance matrix *D* that captures expected pairwise distances
 - differing strategies / assumptions
 - sometimes interplay with second step
 - learn / estimate 3D structure from D
 - multi-dimensional scaling (MDS)
 - weights, non-metric variants

Interactions to Distances I

- Can empirically relate intrachromosomal interactions to genomic distances
- Saccharomyces cerevisiae: every ~130 bp of packed chromatin has length 1 nm
- Provides a simple ruler for conversion of frequencies to physical distances
- Obtaining physical distances enables incorporation of biology based constraints into the subsequent MDS optimization step
- Duan et al *Nature* (2010)

Conversion to Physical Distances

Frequency

Interactions to Distances II

 Empiric & theoretic [polymer biophysics, fractal / equilibrium globules] results support power law relationship between F and D

$D \propto F^{-\alpha}; \ \alpha > 0$

- But index thereof can vary according to organism, resolution, cell cycle phase...
- Estimate index from data [*cf* NMDS]
- Zhang et al *J Comp Bio* (2013) ChromSDE Zou et al *Genome Biology* (2016) HSA

Basis for Po

ChromSDE Index Estimation

Interactions to Distances III

- Create weighted graph whose nodes are detected loci and length of link is inverse contact frequency
- Distance between loci is then length of the shortest path connecting them:
 - Computed using Floyd-Warshall algorithm
 - Can handle single cell Hi-C assays
 - Derived distance purportedly robust
- Lense et al Nat Meth (2014) ShRec3D

 Minimize objective function that places (as much as possible) interacting loci at their expected distance apart (MDS):

$$\min_{\{x_i, x_j \in \mathbb{R}^3\}} \sum_{\{i, j \mid D_{ij} < \infty\}} \omega_{ij} \cdot (\|x_i - x_j\| - D_{ij})^2$$

• Benefit of obtaining physical distances *D* is provision for imposing biology based constraints.

Physical Distance Constraints

- All points in $1\mu m$ sphere (yeast nucleus).
- Adjacent points within a given range.
- No two points on same chromosome can be closer than 30nm (chromatin fiber).
- Minimum distance between points on different chromosomes.
- rDNA repeats within the nucleolus.
- Centromeres cluster opposite nucleolus.

- Drawbacks to using physical distances:
 - Strong assumptions to obtain ruler
 - Organism specific formulations
 - Slow, delicate (interior point) optimization:
 - with yeast loci spaced at 10kb there are x 10^3 parameters, 10^6 constraints
 - ~ 2.5 days to solve; not parallelizable
 - Sensitivity to inputs, data: challenging

Structure Reproducibility

HindIII

EcoRI

Differing restriction libraries

Structure Reproducibility

 $0.066^2 \le d^2(p,q) \le 0.091^2$

 $0.066^2 \le d^2(p,q) \le 0.08^2$

Differing adjacency constraints

 Minimize objective function that places (as much as possible) interacting loci at their expected distance apart (MDS):

$$\min_{\{x_i, x_j \in \mathbb{R}^3\}} \sum_{\{i, j \mid D_{ij} < \infty\}} \omega_{ij} \cdot (\|x_i - x_j\| - D_{ij})^2$$

- Penalty: $\lambda \sum_{\{i,j|D_{ij}=\infty\}} \|x_i x_j\|^2$
 - Non-interacting loci cannot be too close

- Nonconvex, nonlinear optimization: NP hard
- Existing methods use heuristics to solve:
 - MCMC, Simulated annealing (IMP Sali)
- By relaxing solution space from R^3 to R^m problem becomes convex semidefinite:
 - Global minimizer in polynomial time
 - Recover exact solution in noise-free setting
- Zhang et al *J Comp Bio* (2013) ChromSDE

- But ... computational considerations limit problem size: number of loci / resolution
 - ChromSDE uses a sophisticated quadratic SDP solver that handles much larger problems (*m* ~ 3000) than general SDP solvers (*m* ~ 200)
 - Corresponds to 1 Mb resolution for human
 - Need 100 kb resolution to capture topological domains: highly self-interacting regions Dixon et al Nature (2012)

- This has resulted in
 - single chromosome solutions: no whole genome insights Varoquaux et al *Bioinformatics* (2014)
 - downsampling and/or simple organisms
- No 3D genomes for mouse, human
 - ShRec3D exception ...
- Note: New in situ (intact nuclei) assay has improved contact map resolution to ~ 1kb revealing new domains Rao et al Cell (2014)

- ShRec3D advantages include speed, problem size capacity
 - But no index estimation: ChromSDE, HSA
 - Distances ascribed to zero, small frequencies ostensibly filtered but criteria for such filtering unclear
 - Potentially big component of speed
- Purported insensitivity to index prescription

 HSA advantages include handling multitrack data, use of starting configurations, built-in normalization

Two-Stage Hybrid Proposal

- Expand scope of existing methods to provide higher resolution, whole genome reconstructions
- Use ChromSDE or HSA per chromosome:
 - 3D coordinates using *intra*-chromosomal counts [bulk of counts ~ 15 20 fold]
 - Power law index
- Stitch together using *inter*-chromosomal counts [bulk of interacting pairs ~ 10 fold]

Sample (select?) n_k points from ChromSDE solution for chromosome k. Let $n = \sum n_k$

Intra-chromosomal inter-point distances obtained from 3D coordinates hybrid algorithm

Inter-chromosomal inter-point distances: $D_{ij} = (F_{ij})^{-\sqrt{\alpha_k \cdot \alpha_{k'}}}$ $i \in \operatorname{Chr}_k, j \in \operatorname{Chr}_{k'}$

Configuration based on $D_{n \times n}$ via (N)MDS

Map original ChromSDE solutions to the configuration via Procrustes transformation

Lymphoblast Reconstruction

Evaluating Sampling Impact

- No real handle on accuracy:
 - known properties, FISH landmarks
 - crude**; only individual chromosomes
- Assessing reproducibility also difficult:
 - Differing REs construed as replicates
 - Inference: permutation, null-referent dns Segal et al *Biostatistics* (2014)
 - In situ Hi-C provides genuine replicates for a range of cell-lines and resolutions

Reproducibility: In situ 1Mb

Why 3D Reconstructions

- Improves on identifying co-localized functional elements versus contact maps Capurso, Segal BMC Genomics (2014)
 - multi-way *versus* pairwise
 - borrowed strength from contiguity
- Can readily superpose genome-indexed attributes -- problematic for contact pairs
- Find focal extrema: e.g. transcription factories, peripheral heterochromatic regions

Yeast with ChIP-Seq Overlays

Swi6

Tupl

Pol2Ser5p

Bump-Hunting

Function f; covariates \mathbf{x} . Goal: find covariate space subregions \mathcal{R} st $\bar{f}_{\mathcal{R}} = \operatorname{ave}_{\mathbf{x} \in \mathcal{R}} f(\mathbf{x}) \gg \bar{f}$

 $\mathbf{x} = (x, y, z)$: coordinates; f: ChIP-Seq score

Want interpretable \mathcal{R} : impose $\mathcal{R} = \bigcup_{k=1}^{K} \mathcal{B}_k$; where each \mathcal{B}_k is a "box": $\mathcal{B}_k = \bigotimes[a_{jk}, b_{jk}]$

Two-phase strategy used to find good boxes: peeling – remove small unimportant regions; pasting – enlarge boundaries of resultant box Friedman, Fisher Stat & Comp (1999) R pkg: prim ୕୕ୢୄୢ ŏ

, ⁰0 00

Ь

ক্ষ্

ó

စီပို

õ

୕ୢୄୢୢ

਼ੁੈ

៹៓ ៲ ៲ ៰៝

> B ଡ

o

L

Ь

ρ

A

ക്

^{ره} م_لر

Ο

8

૾ૢૼૢૢૢૢૢૢૢૢૢૢૢૢૢ

_⁰

้อเ

ارها

ر <mark>م</mark>ور ها

n

-0

୕୕ୢୄୢ õ

o

਼ੁੇ

0

`% هو

 ANO

Sol -

, o

Ó

٩<mark>ر</mark> ° ່ວຢື)ø ره⁰ C n P <u>0</u> 0 |°₀° oÒ $\overline{\sigma}$

എറ

ChIP-Seq: Yeast, swi6

Park et al Plos One (2013)

min_beads = 25

boxes = 670
sig = 10
sig & (min_chr > 0.2) = 6

<u>box_id</u>	nbeads	<u>mean_out</u>	p_adj	<u>min_chr</u>
18	45	0.514	6.71e-03	0.533
160	25	0.894	6.71e-03	0.520
44	25	0.671	6.71e-03	0.440
60	25	0.785	6.71e-03	0.400
1	25	1.081	6.71e-03	0.080
87	25	0.665	1 . 33e-02	0.000
25	25	0.652	1.99e-02	0.560
42	25	0.651	1 . 99e-02	0.360
11	29	0.596	3 . 31e-02	0.000
125	26	0.645	4.63e-02	0.000

swi6_minbeads25_box18

3 regions from 3 chromosomes

5 kb∣

c ccccccc

116,000

MRS11 CCCC

117,000

Scale

GPR1

115,000

chrVIII:

GD Other

chrVIII

chrll:	251 kB – 252 kB	(3 beads)
chrVIII:	114 kB - 124 kB	(21 beads)
chrXIII:	259 kB – 270 kB	(21 beads)

118,000

STP2

119,000

Protein-Coding Genes from Saccharomyces Genome Database

Other Features from Saccharomyces Genome Database

120,000

ERG11

FLR1

fungicide transporter (fungicide)

SOD2

sacCer2

123,000

YHR007C-R KKK

122,000

121,000

superoxide dismutase (reactive oxygen ROS)

GLO1 glyoxylase (methylglyoxal MG)

Downstream Analysis

- Each of the regions in box_18 contains a gene (FLR1, SOD2, GLO1) that becomes expressed in response to toxic compounds (fungicides, ROS, MG). The genes are:
 - Functionally similar
 - Repressed
 - Physically co-localized
- Potentially poised for co-activation
- Do they share a transcription factor??

Yap1 Motif Finding in box18 regions

chrII: 251 kB - 252 kB (3 beads) chrVIII: 114 kB - 124 kB (21 beads) chrXIII: 259 kB - 270 kB (21 beads)

Downstream Analysis

- FLR1, SOD2, GLO1 are activated by the same transcription factor Yap1
- "The S. cerevisiae transcription factor Yap1 plays an important role in oxidative stress response and multidrug resistance by activating target genes involved in cellular detoxification."
- Nguyen et al *J Biol Chem* (2001)

Reconstruction-free Hotspots

- Considerable uncertainty still surrounds inferred 3D genome reconstructions
- Developing methods to elicit hotspots without requiring a reconstruction desirable
- Problematic since hotspots are critically dependent on 3D proximity

Reconstruction-free Hotspots

Distribute response Y according to contacts F:

$$\widetilde{Y}_i = \sum_{j \in \mathcal{S}} g(F_{ij}, Y_j) \to \sum_{j \in \mathcal{S}} F_{ij} \cdot Y_j$$

Large $F \implies$ small D: proximal upweighting

Further control – mimic \mathcal{B}_k – through refining \mathcal{S}

Rank \tilde{Y}_i s; inference via permutation

Future Work

- Refining, tuning, accelerating MDS, others
- Sampling strategies for two-stage algorithm:
 - Bi-clustering to optimize inter-chromosomal information
- Evaluating reconstruction accuracy and reproducibility:
 - Multi-chromosome, multi-plex FISH
 - Generating null referent distributions

Future Work

- Rotation invariant response analyses:
 - tuning nearest neighbor methods
 - recursive partitioning with hyperplanes
 - persistence homology: Betti numbers, barcodes of excursion sets
- Methodology for reconstruction-free hotspots
- Design, analysis and reconstruction for single cell and in situ assays:
 - replicates, perturbations, time-course