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Measuring gene expression



Use	of	high-throughput	sequencing	
technologies	to	assess	the	RNA	
content	of	a	sample.	
!
Number	of	sequence	reads	that	
map	to	a	transcript	is	a	measure	of	
expression	level.	
!
Count	data!	

Martin & Wang 2011

RNA-seq



• Detect	differential	expression	

• Profile	transcriptome-wide	expression	patterns		
• Assess	allele-specific	expression	
• Quantify	alternative	transcript	usage	
• Discover	novel	genes/transcripts,	gene	fusions	
• Identify	RNA-editing	events	
• Ribosome	profiling	to	measure	translation	
• Massively	parallel	reporter	assays	to	measure	
transcription	from	candidate	enhancers

Applications



• Paired	end	sequencing		
• GRO-seq	(to	measure	rate	of	transcription)	
• CAGE	(5’	ends	of	transcripts)	
• Small	RNA	sequencing	(need	to	enrich	to	see	
them)	

• Single	cell	RNA-seq	

Variants of RNA-seq 



• Study	design	
– Biological	replicates	
– Reference	genome?	
– Good	gene	annotation?	

• Read	depth	
• Barcoding	
• Read	length	
• Paired	vs.	single-end

Need	biological	replicates	to	measure	accuracy	
Technical	replicates	measure	precision

Experimental choices



Human	Transcriptomics:	
• ~15-20K	genes	expressed	in	a	tissue	or	cell	line.	
• Genes	are	on	average	3KB	
• For	1x	coverage	using	100	bp	reads,	would	need	600K	
sequence	reads	(on	average)	

• In	reality,	we	need	MUCH	higher	coverage	to	
accurately	estimate	gene	expression	levels.	

• 30-50	million	reads

How many reads needed?



• QC	
• Alignment	(or	kallisto	pseudo	alignment)	
• Statistical	analysis	

– Quantification	
– Hypothesis	tests	
– Clustering	
– Integrate	with	other	data	

• Visualization

Analysis pipelines



• FastQC	
– Before	alignment	
– http://www.bioinformatics.babraham.ac.uk/projects/fastqc/	

• RNA-SeQC	
– After	alignment	
– https://confluence.broadinstitute.org/display/CGATools/RNA-SeQC	

• Proportion	of	reads	that	mapped	uniquely	
– Mark	duplicates	to	assess	PCR	over-amplification	

• Assess	ribosomal	RNA	and	possible	contaminant	content	
– human	RNA	(if	not	human	samples)	
– Mycoplasma	(if	cell	lines)	

• Quality	of	de	novo	assembled	transcripts:	
– http://hibberdlab.com/transrate/

QC

https://confluence.broadinstitute.org/display/CGATools/RNA-SeQC
https://confluence.broadinstitute.org/display/CGATools/RNA-SeQC
http://hibberdlab.com/transrate/


1.	Assign	reads	to	transcripts	
• pre-defined	versus	de	novo	transcriptome	
• multi-mapping	reads	

2.	Normalization	of	transcript	read	counts	
• Library	size	
• Gene	length	
• Base	composition	biases	(hexamers,	GC%)	

Quantification

Example	summary	statistics:	RPKM,	FPKM,	CPM,	TMM



• Goal:	determine	whether	observed	difference	
in	read	counts	is	greater	than	would	be	
expected	due	to	random	variation.	
!

• If	reads	independently	sampled	from	
population,	they	would	follow	multinomial	
distribution	approximated	by	Poisson

Pr(X = k) = λ
ke−λ

k!

Differential Expression



• BUT!	We	know	that	the	count	data	show	more	
variance	than	expected	under	Poisson	

• Over-dispersion	problem	mitigated	by	using	the	
negative	binomial	distribution,	which	is	
determined	by	mean	and	dispersion	parameters	

• Dispersion	is	hard	to	estimate	
- High	false	positive	rate:	http://biorxiv.org/
content/early/2015/06/11/020784	

- Estimates	based	on	different	methods	vary

Differential Expression

http://biorxiv.org/content/early/2015/06/11/020784


!

Quantification	and	statistical	analysis:		
• edgeR	
• 	DESeq	/	DESeq2	
• 	VOOM	(+	limma)	
• 	Others…	

Many software packages



n=2 n=3 n=4 n=6

False	Positive	Rate

• Sensitivity	increases	with	samples	size	
• EdgeR	wins

Differential Expression - sample size

Williams	et	al.	2014



76m 38m 19m 9.5m

False	Positive	Rate

• Sensitivity	increases	with	number	mapped	reads	
• EdgeR	wins

Differential Expression - mapped reads

Williams	et	al.	2014



Additional Details 
!



Power	of	paired-end	reads

• Impact	on	read	mapping	
– Pairs	give	two	locations	to	determine	whether	
fragment	is	unique	(assess	PCR	over-amplification)	

• Useful	for	estimating	transcript-level	abundance	
– Increases	number	of	splice	junction	spanning	reads	
and	fragments	

• Either	the	read	maps	over	a	splice	junction	or	each	end	of	a	
pair	maps	to	different	exons	

• Single	end	is	often	good	enough



Distribution	of	reads	over	gene	body

Normalized	by	gene	length

TSS END



Martin	&	Wang,	Nature	Reviews	Genetics	2011

Transcript	Assignment

Aligned	contiguous	and	
spliced	reads

Build	graph	to	connect	
neighboring	concordant	
alignments

Traverse	graph	to	
assemble	variants

Assemble	possible	
isoforms



Transcript	Assignment	Tools

• Annotated	transcript	assembly	
– Cufflinks	
– RSEM	
– TIGAR	
– MISO	

• De	novo	transcript	assembly	
– Cufflinks	
– Trans-ABySS	
– Trinity	
– RSEM



Bias	Correction	and	Normalization

• Random	hexamer	bias	(Hansen	et	
al.	2010)	
– From	PCR	or	RT	primers	
– Re-estimate	read	counts	to	

account	for	bias	
• Resources	for	normalization	

– Bullard	et	al.	2010	
– Williams	et	al.	2014	
– http://www.rna-seqblog.com/

data-analysis/which-method-
should-you-use-for-normalization-
of-rna-seq-data/

http://www.rna-seqblog.com/data-analysis/which-method-should-you-use-for-normalization-of-rna-seq-data/
http://www.rna-seqblog.com/data-analysis/which-method-should-you-use-for-normalization-of-rna-seq-data/


Compare	Splice	Junction	Mappers

		
SJM

		
Length

		
SE	|	PE

		
Annotation

Prop.	SJs	
Relative	to	
BWA*	

%	Splice	
Junctions	
Recovered

Mapsplice 100 PE No 0.89 89.0%
Mapsplice 100 SE No 0.43 85.2%
STAR 100 PE Yes 0.94 93.2%
STAR 100 SE Yes 0.44 90.8%
STAR 100 PE No 0.83 92.0%
STAR 100 SE No 0.35 90.0%
Tophat2 100 PE Yes 0.73 86.9%
Tophat2 100 SE Yes 0.41 82.8%
Tophat2 100 PE No 0.64 85.3%
Tophat2 100 SE No 0.37 81.5%
Tophat2 50 PE Yes 0.82 88.5%
Tophat2 50 SE Yes 0.22 79.1%

*Mapped	reads	to	transcriptome	using	BWA	to	establish	ground	truth.



Compare	tools	for	splice	junction	mapping


