Categorical data and contingency tables

Katie Pollard

BMI 206
September 28, 2016

Relating Categorical Variables

rs80265967	Disease	No disease
A	1	6721
C	2	2

Association

rs17880490	Disease	No disease
G	360	1981
A	2	11

No association

* joint = product of marginals

Enrichment

Quantifies excess overlap in sets versus expectation

- Refers to counts of observations in sets
- Not applicable to quantitative data
- Expectation is relative to a null distribution, e.g.,
- Independence
-Background level of dependence
- Statistical tests use hypergeometric, binomial, multinomial distributions. Also simulation.
Example: Gene Ontology and RNA-seq
Sets of genes annotated with different ontology terms. For each term, test if genes differentially expressed in cancer vs. healthy are enriched.

Measures of Association

In a 2x2 table (generalizes to lxJ) association can be measured in many ways:

- Difference in proportions between rows (columns)
- Relative Risk = ratio of two proportions
- Odds Ratio = ratio of two odds where odds = p/(1-p)

Testing for independence:

- Pearson's chi-square (Poisson, product-multinomial)
- Fisher's exact test (small counts, fixed marginals)

2x2 Table Examples

Categorical Distributions

The distribution for contingency table data depends on the study design (i.e., what values are fixed in sampling):

- Nothing fixed = each cell is Poisson
- Total fixed, but no marginals = single Multinomial (with levels equal to number of cells)
- Row marginals fixed = product-Multinomial (multinomial per row with levels equal to number of columns; binomials if 2 columns)
- Column marginals fixed = product-Multinomial (multinomial per column with levels equal to number of rows; binomials if 2 rows)
- All marginals fixed = single Hypergeometric

Categorical Distribution Mathematics

Log-linear models

In an IxJ table, expected cell counts $\left(\mu_{i j}\right)$ can be modeled as a linear function of the categorical variables:

$$
\log \mu_{\mathrm{ij}}=\mu+\mu^{\mathrm{i}}+\mu^{\mathrm{j}}+\mu^{\mathrm{ij}}
$$

- μ is the overall mean $E\left(n_{i j}\right)=n_{\pi_{j}}$ (n are counts, π is prob)
- μ^{i} and μ^{j} are row and column effects
- μ^{i} is interaction (association) of row and column

Independence corresponds to:

- All $\mu^{\mathrm{ij}}=0$.
- Equivalently, $\pi_{\mathrm{j}}=\pi_{\mathrm{f}} . \Pi_{\mathrm{j}}$ or $\mu_{\mathrm{ij}}=\mathrm{n} \pi_{\mathrm{f}} . \pi_{\mathrm{j}}$ for all i, j.

Can easily extend to 3-way and higher tables...

Code Examples

