BMI 206

Bayesian Statistics

Ryan D. Hernandez, PhD
Associate Professor
Bioengineering and Therapeutic Sciences
Institute for Human Genetics
Quantitative Biosciences Institute
ryan.hernandez@ucsf.edu

Big Data Era: Drinking from the fire hose

What are statistics?

- The collection, organization, analysis, interpretation, and presentation of data
- Biostatistics represents the application of statistics to biomedical research
- Three main branches of statistics
- Descriptive statistics
- Inferential statistics
- Theoretical statistics

Background

- We are all aware of what the word "probability" means, here are some definitions:

- a priori
- The basic notion in our heads: flipping a coin, rolling die
- frequentist
- Data-driven, based on observed frequency across experiments
- subjective
- Combination of the above

Outline

- There is no way to cover all of Bayesian statistics in a single lecture!!
- Basic probability
- Addition and multiplication rules
- Independence
- Joint and conditional probabilities
- Bayes' Rule
-Bayesian statistical modeling and inference
- Markov Chain Monte Carlo (MCMC)

Simple Example

-Let's consider rolling a die.

- We are interested in two events:
- A: we roll a number >4.
-B: we roll an even number
- It is easy to calculate the probability of each event:

$$
\begin{aligned}
& \text { - } P(A)=2 / 6=0.333 \\
& \text { - } P(B)=3 / 6=0.5
\end{aligned}
$$

Simple Example

-What is the probability of A or B ?

- Addition Rule:
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Independence and the Multiplicative Rule

-Let's introduce the idea of conditional probability.
-Consider the effect of one of these events on another: What is the probability that we will see an even number if we already know that we have thrown a number larger than 4 ?
-This can be written down as: $P(B \mid A)$.

Independence \& Conditional Probability

-The probability of event B given event $A:=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})$

- It is a conditional probability since it depends on A having occurred.
- If A occurred, then we must have thrown either a " 5 " or a " 6 "
- The probability of an even number given that you have thrown a number larger than 4 , is $1 / 2$.
- This is the conditional probability of B given $A=\operatorname{Pr}(B \mid A)$
-The unconditional probability of B is $\operatorname{Pr}(B)=3 / 6=1 / 2$

Independence (cont'd)

- The multiplication rule for probabilities
$-\operatorname{Pr}(\mathbf{A}$ and $\mathbf{B})=\operatorname{Pr}(\mathrm{A}) \times \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}) \times \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})$
- IF two events A and B are independent, then:
- $\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A})$ and $\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B})$
- Therefore: $\operatorname{Pr}(\mathbf{A}$ and $\mathbf{B})=\operatorname{Pr}(A) \times \operatorname{Pr}(B)$

Law of Total Probability

-What if we want to know the overall probability of an event? -What is the $\operatorname{Pr}(\mathrm{B})$?
-The Law of Total Probability:

$$
\begin{aligned}
-\operatorname{Pr}(\mathrm{B}) & =\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \times \operatorname{Pr}(\mathrm{A})+\operatorname{Pr}\left(\mathrm{B} \mid \mathrm{A}^{\mathrm{c}}\right) \times \operatorname{Pr}\left(\mathrm{A}^{\mathrm{c}}\right) \\
& =1 / 2 \times 1 / 3+1 / 2 \times 2 / 3 \\
& =1 / 6+2 / 6=1 / 2
\end{aligned}
$$

- Implication: Using just a little bit of algebra, we can now come up with explicit forms for conditional probability!

Hypothetical Example

- Suppose TSA imposes mandatory Ebola testing of all travelers on domestic flights in the USA.
- You go on a flight, and are tested for Ebola.
- Your test comes back positive...

Hypothetical Example

- What is the probability that you are actually infected with Ebola?
- Suppose the sensitivity of the test is high:
- 99.9\% of people infected with Ebola test positive.
- Suppose the specificity of the test is also high:
- 99.9\% of people not infected with Ebola test negative.
- Given your positive test and this information, should you be quarantined?!

Hypothetical Example

- Bayes' Rule comes to the rescue!!
- Let A be the event "Have Ebola"
- Let B be the event "Test Positive for Ebola"

- We want $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ in terms we can easily quantify.
- Recall: $P(A$ and $B)=P(A \mid B) \times P(B)=P(B \mid A) \times P(A)$

Hypothetical Example

- $\mathrm{A}=$ "Have Ebola infection"; $\mathrm{B}=$ "Test Positive for Ebola"
- In the USA, $\mathrm{P}(\mathrm{A})=\operatorname{Pr}($ have Ebola) $\approx 4 / 316,100,000=1.3 \mathrm{e}-8$.
- Sensitivity: $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.999$; Specificity: $\mathrm{P}\left(\mathrm{B}^{\mathrm{C}} \mid \mathrm{A}^{\mathrm{C}}\right)=0.999$

$$
\begin{aligned}
P(A \mid B) & =\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)} \\
& =\frac{0.999 \times 1.3 e-8}{0.999 \times 1 e-8+0.001 \times(1-1.3 e-8)} \\
& =1.26 e-5
\end{aligned}
$$

- Thus, there is only a small chance you are actually infected, despite the high sensitivity and specificity!!

Hypothetical Example

- $A=$ "Have HIV infection"; $B=$ "Test Positive for HIV"
- In Liberia, $P(A)=\operatorname{Pr}($ have Ebola) $\approx 4665 / 4,294,000=0.0011$.
- Sensitivity: $P(B \mid A)=0.999 ;$ Specificity: $P(B C \mid A C)=0.999$

$$
\begin{aligned}
P(A \mid B) & =\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)} \\
& =\frac{0.999 \times 0.0011}{0.999 \times 0.0011+0.001 \times(1-0.0011)} \\
& =0.5207
\end{aligned}
$$

- Thus, there is 52.07% chance you are actually infected, which is a much better test.
- The important difference is the prior probability of Ebola!

Bayesian Statistics

- In this class, you previously talked about Hypothesis Testing and Parameter estimation.
- These were largely discussed from the frequentist perspective (i.e., Maximum Likelihood)
- In that case, you wanted to calculate the probability of the observed data under a model:
- P(Data | H_{0})
- For parameter estimation, the goal was to find the parameter values that maximize this probability (i.e., maximum likelihood estimate):
- $\hat{\theta}=\underset{\theta}{\operatorname{argmax}} P($ Data $\mid \theta)$
- In Bayesian Statistics, we turn this around!

Bayesian Statistics

- Main reasons to use Bayesian Statistics:
- to account for previous knowledge about a parameter
- logically update our knowledge about a parameter after we observe data
- make formal probability statements about the parameter
- to specify model assumptions and check model quality/sensitivity to these assumptions in a straightforward way.

Bayesian Statistics

- Bayesians treat unobserved data and unknown parameters in similar ways:
- Each has a probability distribution!
- In a Bayesian model, we will need two things:
- A likelihood function describing the probability of the data given the parameter values
- A prior distribution, which describes the behavior of the parameter(s) unconditional on the data.
- The prior could reflect:
- Uncertainty about a parameter that is actually fixed
- The variety of values that a truly stochastic parameter could take.

Hemophilia Example

- In humans, males have an X and a Y chromosome, while females have two X chromosomes.
- Hemophilia is a genetic disease caused by a recessive Xlinked mutation.
- Much more common in males! (though still rare)
- Consider a woman with an affected brother.
- What is the probability she is a carrier?

Hemophilia Example

- We are told her father is not affected, so her mother must have been a carrier.
- The prior probability of being a carrier for this woman is 50\%:
- $P(\theta=1)=P(\theta=0)=0.5$
$\theta:$ Carrier status
$(0=\mathrm{no}, 1=\mathrm{yes})$

Hemophilia Example

- The prior probability of being a carrier for this woman is 50% :
- $P(\theta=1)=P(\theta=0)=0.5$
- Suppose the woman has a son that is unaffected.
- Let $y_{1}=1$ and $y_{1}=0$ denote the case that the son is affected or unaffected.
- We can then write down two probabilities for the son being unaffected:
- $P\left(y_{1}=0 \mid \theta=1\right)=0.5$
- $P\left(y_{1}=0 \mid \theta=0\right)=1$
- We can now use Bayes' rule to combine the data with the prior probability to produce the posterior probability:

$$
P\left(\theta=1 \mid y_{1}\right)=\frac{P\left(y_{1} \mid \theta=1\right) P(\theta=1)}{P\left(y_{1} \mid \theta=1\right) P(\theta=1)+P\left(y_{1} \mid \theta=0\right) P(\theta=0)}=0.5
$$

Hemophilia Example

-What if the woman has another unaffected son?

- Let $y_{2}=0$ denote the case that the $2 n d$ son is unaffected
- We can then write down two probabilities for both sons being unaffected:
$\left.\begin{array}{l}\text { - } \mathrm{P}\left(\mathrm{y}_{1}=0, \mathrm{y}_{2}=0 \mid \theta=1\right)=0.5 \times 0.5=0.25 \\ \cdot \mathrm{P}\left(\mathrm{y}_{1}=0, \mathrm{y}_{2}=0 \mid \theta=0\right)=1 \times 1=1\end{array}\right\}$
This is not exactly what we want..
- Let $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$, then Bayes' rule gives use the posterior probability:

$$
\begin{aligned}
P(\theta=1 \mid y) & =\frac{P(y \mid \theta=1) P(\theta=1)}{P(y \mid \theta=1) P(\theta=1)+P(y \mid \theta=0) P(\theta=0)} \\
& =\frac{0.25 \times 0.5}{0 . s 5 \times 0.5+1 \times 0.5}=0.2
\end{aligned}
$$

Hemophilia Example

- Intuitively, the more unaffected children the woman has, the less probable it is that she is a carrier.
- Bayes rule provides a formal mechanism for determining the extent of the correction!
- A key aspect of Bayesian analysis is the ease with which sequential analyses can be performed.
- Suppose the woman has a 3rd son, who is also unaffected.
- The entire calculation does not need to be redone:
- Use the previous posterior probability as the new prior!

$$
P\left(\theta=1 \mid y_{1}, y_{2}, y_{3}\right)=\frac{0.5 \times 0.2}{0.5 \times 0.2+1 \times 0.8}=0.111
$$

Setting up a Bayesian Model

- The key to Bayesian Inference is that the unknown parameter(s) θ are treated as random variables with prior distribution $f(\theta)$.
- Sometimes in Bayesian world the prior is denoted $\pi(\theta)$.
- The prior distribution represents what we think we know about the parameters before we observe any data.
- This is different from likelihood theory, where θ is treated as an unknown constant!
- Given some observed data $\mathrm{X}=\mathrm{x}$, we are interested in:

$$
f(\theta \mid x)=\frac{f(x, \theta)}{f(x)}=\frac{f(x \mid \theta) f(\theta)}{\int f(x \mid \theta) f(\theta) d \theta}
$$

- Let's develop a Bayesian model for asthma mortality rates per year for a city with 200,000 people.
- It is found that 3 people died from asthma.
- This gives a crude estimate of 1.5 deaths per 100k people

Setting up a Bayesian Model: Asthma mortality

- We can do better!
- Let y be the number of deaths, and θ death rate per 100k
- We can model the likelihood: $\mathrm{P}(y \mid \theta)=$ Poisson(20).
- What about the prior?!
- In Western countries, typical asthma mortality rates are around 0.6 per 100k.
- We can use this information!

Conjugate Priors

- When choosing a prior distribution there are 2 approaches:
- Choose a distribution matching what you know
- Choose a distribution that is convenient.
- Certain probability distributions have a very nice property:
- When you multiply them together, terms combine to give you a nice functional form.
- This is a really nice property in Bayesian statistics, because we are always multiplying the likelihood function and a prior distribution.
- These are called conjugate priors.
- A few examples:

Likelihood	Prior
Bernoulli	Beta
Binomial	Beta
Poisson	Gamma
Multinomial	Dirichlet
Exponential	Gamma
Normal	28

Setting up a Bayesian Model: Asthma mortality

- What about the prior?!
- In Western countries, typical asthma mortality rates are around 0.6 per 100k.
- We can use this information! Pick a conjugate prior:
- $\theta \sim \operatorname{Gamma}(3,5)$

$$
\begin{array}{rlr}
y & \sim \operatorname{Poisson}(2 \theta) & \text { distrameters of the prior } \\
\theta & \sim \operatorname{Gamma}(\alpha, \beta) & \text { as hyper parameters. } \\
\theta \mid y & \sim \operatorname{Gamma}(\alpha+y, \beta+2)
\end{array}
$$

Setting up a Bayesian Model: Asthma mortality

- What if we get more data?!
- Suppose we follow the same city for 10 years, and see a total of 30 deaths due to asthma.

$$
\begin{aligned}
y_{i} & \sim \operatorname{Poisson}(2 \theta) \\
\theta & \sim \operatorname{Gamma}(\alpha, \beta) \\
\theta \mid y & \sim \operatorname{Gamma}\left(\alpha+\sum_{i=1}^{10} y_{i}, \beta+2 n\right)
\end{aligned}
$$

Setting up a Bayesian Model: Asthma mortality

- We are often interested in these summaries of the posterior distribution:
- Posterior mean ("average value")
- Posterior mode ("most probable value")
- High posterior density interval (analog of confidence interval)

Two More Examples

- The examples we've examined so far had nice closed form solutions (thanks conjugate priors!).
- This isn't always the case!!
- Bayesian clustering in population genetics
- Bayesian protein structure prediction
- But first a bit more background.
- Data: $Y_{1}, Y_{2}, \ldots, Y_{n} \sim N\left(\mu, \sigma^{2}\right)$, and a non-informative prior: $\pi_{0}\left(\mu, \sigma^{2}\right) \propto 1 / \sigma^{2}$
- Joint posterior:

$$
\pi\left(\mu, \sigma^{2} \mid y\right) \propto\left(\frac{1}{\sigma^{2}}\right)^{n / 2+1} \times \exp \left\{-\frac{\sum\left(y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right\}
$$

- This is not the form of any standard probability distribution...
- Suppose we just wanted the posterior mean
- The definition of the mean of a distribution is:

$$
E(X)=\int x \pi(x) d x
$$

- This can be generalized to any function h :

$$
E(h(X))=\int h(x) \pi(x) d x
$$

- But this can sometimes be hard to evaluate!

Monte Carlo Integration

- Let's take a random sample $X^{(1)}, X^{(2)}, \ldots, X^{(N)} \sim \pi(x)$.
- If these are independent samples, then by the law of large numbers:

$$
\bar{h}_{N}=\frac{1}{N} \sum_{i=1}^{N} h\left(X^{(i)}\right) \underset{\lim N \rightarrow \infty}{\longrightarrow} E(h(X))
$$

- This is Monte Carlo (MC) integration.
- This holds for (almost) any proposal distribution $\pi(x)$.
- Of course, some proposal distributions are better than others...

Markov Chain Monte Carlo

- Back to our goal: determine the posterior distribution $\pi(\theta \mid y)$!
- Let's simplify to start out, and just write our target distribution as $\pi(x)$.
- Metropolis et al (1953) solved the problem for a symmetric proposal distribution, and Hastings (1970) generalized the solution to all distributions.
- This solution (the Metropolis-Hastings algorithm) is what was originally referred to as MCMC.

Metropolis Algorithm

- At each iteration t :
.Sample $y \sim q\left(y \mid x^{(t)}\right)$.
"Candidate" point Symmetric "Proposal" distribution: $q(y \mid x)=q(x \mid y)$

2. Calculate acceptance ratio: $r=\frac{\pi(y)}{\pi\left(x^{(t)}\right)}$
3. Set $x^{(t+1)}= \begin{cases}y & \text { with probability } \min (1, r) \\ x^{(t)} & \text { else }\end{cases}$
4. Repeat m times.

STRUCTURE Setup

- You start with a sample of individuals with genotypes
- Are they from a single homogeneously mixing population?
- If there is substructure in your data, how many populations contributed to your sample?
- We refer to this as the "K problem"...

Distance-Based methods

- There are many non-parametric models for identifying population structure in a dataset.
- Neighbor Joining
- hierarchical clustering
- PCA
- What are some of the problems with distance-based methods?
- Assumes that individuals are random draws from some parametric model.
- Inference for the parameters corresponding to each cluster is then done jointly with inference for the cluster membership of each individual.

Population Structure of Asia

HUGO Pan-Asian SNP Consortium. Science (2009).

STRUCTURE Setup

- Detecting population structure in a sample is really a missing data problem!
- If we knew:
- The frequency of every allele in each ancestral population
- The ancestral population that each person derives from
- Then we could write down a simple likelihood function for our data
- Assuming sites are independent, we could just multiply the frequencies of all alleles in the ancestral population.
- If we didn't know the ancestral population, we could iterate through all populations, and choose the population with maximum likelihood!

STRUCTURE Setup

- Of course, we don't know either of those key elements!
- In fact, because of genetic drift, knowing the ancestral population may not even be that helpful.
- MCMC to the rescue!

STRUCTURE Setup

- $X=$ genotypes of the sampled individuals
- $Z=$ the (unknown) populations of origin of individuals
- $P=$ the (unknown) allele frequencies in all populations
- Assumptions:
- Hardy-Weinberg Equilibrium within populations (but not necessarily between populations)
- Complete linkage equilibrium between loci within populations (i.e., independence).

STRUCTURE Setup

- Goal: $\operatorname{Pr}(Z, P \mid X)$

Joint probability of pop

 membership \& their freqs given obs. genotypes- $\propto \operatorname{Pr}(\mathrm{X} \mid \mathrm{Z}, \mathrm{P}) \operatorname{Pr}(Z, P)$
- $=\operatorname{Pr}(\mathrm{X} \mid \mathrm{Z}, \mathrm{P}) \operatorname{Pr}(Z) \operatorname{Pr}(P)$
- $\operatorname{Pr}(Z, P \mid X) \propto \operatorname{Pr}(X \mid Z, P) \operatorname{Pr}(Z) \operatorname{Pr}(P)$

STRUCTURE Setup

- Our goal is to construct a Markov chain $\theta^{(0)}, \theta^{(1)}, \ldots$ with stationary distribution $\pi(\theta)=\operatorname{Pr}(\mathrm{Z}, \mathrm{P}, \mathrm{Q} \mid \mathrm{X})$.
- This means that for m very large, $\theta^{(\mathrm{m})} \sim \pi(\theta)$
- And for c very large, $\theta^{(m)}, \theta^{(m+c)}, \theta^{(m+2 c)}, \ldots$ are independent draws from $\pi(\theta)$.
- m is referred to as the burn-in
- c is referred to as the thinning interval.

STRUCTURE Setup

- Suppose we have N diploid individuals genotyped at L loci.
- Each individual comes from one of K populations.
$\left(x_{l}^{(i, 1)}, x_{l}^{(j, 2)}\right)=$ genotype of the i ith individual at the l th locus, where $i=1,2, \ldots, N$ and $I=1,2, \ldots, L$;
$z^{(i)}=$ population from which individual i originated; $p_{k j}=$ frequency of allele j at locus l in population k, where $k=1,2, \ldots, K$ and $j=1,2, \ldots, J_{l}$,
- If we knew which population each individual came from, then we could write:

$$
\operatorname{Pr}\left(X_{\left.f^{(i, a)}\right)}=j \mid Z, P\right)=p_{\chi(i) j}
$$

- But we don't...

STRUCTURE Setup

- $\operatorname{Pr}(Z, P \mid X) \propto \operatorname{Pr}(X \mid Z, P) \operatorname{Pr}(Z) \operatorname{Pr}(P)$
- We don't know anything about the population of origin.
- What's a good prior distribution to use?

$$
\operatorname{Pr}\left(z^{(i)}=k\right)=1 / K,
$$

- We don't know anything about the population allele frequencies.
- What's a good prior distribution to use?

$$
p_{k l} \sim \mathcal{D}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{J_{l}}\right)
$$

- Dirichlet distribution! (i.e., generalized Beta)

STRUCTURE Setup

- Step I: Pretend we know population membership of each individual, and sample population frequencies.
- Step 2: Pretend we know population allele frequencies, and sample population membership.
- This is a special type of MCMC called a Gibbs sampler.

STRUCTURE Setup

- Step I: Sample $\mathrm{P}^{(m)}$ from $\operatorname{Pr}\left(P \mid X, Z^{(m-1)}\right)$
- If $\operatorname{Pr}(P) \sim \operatorname{Dir}\left(\lambda_{1}, \ldots, \lambda_{j}\right)$ and $\operatorname{Pr}(X \mid Z, P)=$ allele frequencies, then
- $\operatorname{Pr}\left(P \mid X, Z^{(m-1)}\right) \sim \operatorname{Dir}\left(\lambda_{1}+n_{k l 1}, \ldots, \lambda_{j}+n_{k l J}\right)$
- Step 2: Sample $Z^{(m)}$ from $\operatorname{Pr}\left(Z \mid X, P^{(m)}\right)$
- Key insight is that

$$
\operatorname{Pr}\left(z^{(i)}=k \mid X, P\right)=\frac{\operatorname{Pr}\left(x^{(i)} \mid P, z^{(i)}=k\right)}{\sum_{K^{\prime}=1}^{K} \operatorname{Pr}\left(x^{(i)} \mid P, z^{(i)}=k^{\prime}\right)} .
$$

Applications

Bryc, K. et al. Colloquium paper: genome-wide patterns of population structure and admixture among Hispanic/Latino populations. PNAS (2010).

Fig. 1. Neighbor-joining tree from pairwise D^{2} genetic distances between populations (65). African population branches are color-coded according to language family classification. Population clusters by major geographic region are noted; bootstrap values above 700 out of 1000 are indicated by thicker lines and bootstrap number.

Eastern Africa

- Niger-Kordofanian

Nio-Saharan
Ahroasiatic

Western / Central Africa

Southern Africa Pygmes
Tishkoff, S. A. et al. The genetic structure and history of Africans and African Americans. Science 324 1035-1044 (2009).

Fig. 2. Principal components analysis (22) created on the basis of individual genotypes. (A) Global data set and (B) African data set.

Tishkoff, S. A. et al. The genetic structure and history of Africans and African Americans. Science 324, 1035-1044 (2009).

Tishkoff, S. A. et al. The genetic structure and history of Africans and African
Americans. Science 324, 1035-1044 (2009).

Inferential Structure Determination

- Major challenge in the determination of threedimensional macromolecular structures:
- Experimental data are indirect.
- We observe physical effects that depend on the atomic geometry and use a forward model to relate the observed data to the atomic coordinates.
- Challenges:
- inherently degenerate
- data often incomplete
- data/model rife with uncertainties
- ill-posed problem: no single structure!!

- Bayesian model can help overcome these!

Inferential Structure Determination

- Rather than try to obtain a single best protein structure, Bayesian statistics can be used to obtain an ensemble.
- In this "sausage plot", the thickness of the sausage is proportional to the atom-wise error bars from the model.

Inferential Structure Determination

- Goal:
- Get a score $\left(P_{i}\right)$ for every possible conformation $\left(X_{i}\right)$
- Rank scores, and keep the best ones

Inferential Structure Determination

- Goal:
- Get a score (P_{i}) for every possible conformation (X_{i})
- Rank scores, and keep the best ones
- In this case:
- $P_{i}=P\left(X_{i} \mid D, I\right)$: Probability of a conformation given the data (D) and prior information (I).
- As usual, apply Bayes' Rule!
- $P(X \mid D, I) \propto P(D \mid X, I) P(X \mid I)$
- The likelihood $P(D \mid X, I)$ combines a forward model that relates observed data to atomic coordinates and an error distribution.
- The prior distribution $P(X \mid I)$ uses prior information about bimolecular structures, determined by physical energy and temperature of the system.

Inferential Structure Determination

$$
P(X, \xi \mid D, I) \propto P(D \mid X, \xi, I) P(X \mid I) p(\xi \mid I)
$$

- The full model evaluated incorporates nuisance parameters ($\xi=\{\gamma, \sigma\}$).
- Inference is then performed using MCMC.

