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What are statistics?

* The collection, organization, analysis,
interpretation, and presentation of data

* Biostatistics represents the application of
statistics to biomedical research

 Three main branches of statistics
— Descriptive statistics
— Inferential statistics
— Theoretical statistics



Background

 We are all aware of what the word “probability”
means, here are some definitions:

Probability

()

Chance Likelihood

S
— a priori

* The basic notion in our heads: flipping a coin, rolling die

— frequentist

* Data-driven, based on observed frequency across experiments
— subjective

 Combination of the above



Outline

* [here is no way to cover all of Bayesian statistics in a single
ecturel!

* Basic probability
e Addition and multiplication rules
*Independence
e Joint and conditional probabillities
*Bayes' Rule
e Bayesian statistical modeling and inference
* Markov Chain Monte Carlo (MCMC)




Simple Example

| et's consider rolling a die.
*\We are interested in two events:
*A: we roll a number >4.
*B: we roll an even number
*|t is easy to calculate the probability of each event:
*P(A) = 2/6 = 0.333
*P(B) =3/6 =0.5




Simple Example

*\What is the probability of A or B?
e Addition Rule:
* P(A or B) = P(A) + P(B) - P(A and B)




Independence and the Multiplicative Rule

| et's introduce the idea of conditional probability.

» Consider the effect of one of these events on another:
What is the probability that we will see an even number
if we already know that we have thrown a number larger
than 47?

* This can be written down as: P(B | A).




Independence & Conditional Probability

* The probability of event B given event A := Pr(B|A)

*|t Is a conditional probabillity since it depends on A having
occurred.

-t A occurred, then we must have thrown either a “5” or a “6”

- The probability of an even number given that you have
thrown a number larger than 4, is V2.

-This is the conditional probability of B given A = Pr(B|A)
* The unconditional probability of B is Pr(B) = 3/6 = >




Independence (cont'd)

* The multiplication rule for probabilities
- Pr(A and B) = Pr(A)xPr(B|A) = Pr(B)xPr(A|B)

- |F two events A and B are independent, then:
e Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B)

e Therefore: Pr(A and B) = Pr(A)xPr(B)
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Law of Total Probability

*\What it we want to know the overall probability of an event?
-What is the Pr(B)?
- The Law of Total Probability:
-Pr(B) = Pr(B|A)xPr(A)+Pr(B|Ac)xPr(Ac)
= 1/2x1/3 + 1/2x2/3
= 1/6+2/6 = 1/2
e |mplication: Using just a
ittle bit of algebra, we can
now come up with explicit

forms for conditional
probabillity!
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Hypothetical Example

e Suppose TSA imposes mandatory Ebola testing of
all travelers on domestic flights in the USA.

* You go on a flight, and are tested for Ebola.

* Your test comes back positive...
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Hypothetical Example

 \What is the probability that you are actually
infected with Ebola?

* Suppose the sensitivity of the test is high:
* 99.9% of people infected with Ebola test
positive.
e Suppose the specificity of the test is also high:

* 99.9% of people not infected with Ebola test
negative.

e (Given your positive test and this information,
should you be quarantined?!
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Hypothetical Example

 Bayes' Rule comes to the rescue!!
et A be the event "Have Ebola”
e | et B be the event “Test Positive for Ebola”

* We want P(A | B) in terms we can easily quantity.
* Recall: P(A and B) = P(A|B)xP(B) = P(B|A)xP(A)

A:Ebola B:+test

“Probability of having
positive test given you

are infected with Ebola’:
Sensitivity

“Probability of having

“Probability of being
infected with Ebola”

Ebola given positive
test”

P(B|A)P(A)
P(B)
P(B) _ P(BIA)P(A) 4+ P(B‘AC)P(AC) “Prob.afbility of testir”wg

positive for Ebola

P(A|B) =
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Hypothetical Example

A ="Have Ebola infection”; B = “Test Positive for Ebola”

* [nthe USA, P(A) = Pr(have Ebola) = 4/316,100,000=1.3e-8.

« Sensitivity: P(BJA) = 0.999; Specificity: P(BC|AC):O.999
P(B|A)P(A)

(B|A)P(A) + P(B|A®)P(A°)

0.999x1.3e—38
0.999x1e—840.001x(1—1.3e—8)

= 1.20e — 5

e Thus, there is only a small chance you are actually
iInfected, despite the high sensitivity and specificity!!

P(A|B) = -
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Hypothetical Example

e A ="Have HIV infection”; B = “Test Positive for HIV”
* In Liberia, P(A) = Pr(have Ebola) = 4665/4,294,000=0.0011.
o Sensitivity: P(BJA) = 0.999; Specificity: P(BC|AC)=0.999

P(B|A)P(A)
(B|A)P(A) + P(B|A®)P(A°)

__ 0.999x0.0011
~0.999x0.0011+0.001x(1—0.0011)

= (0.5207

* Thus, there is 52.07% chance you are actually infected,
which Is a much better test.
 The important difference is the prior probability of Ebola!

P(A|B) = -
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Bayesian Statistics

* In this class, you previously talked about Hypothesis Testing
and Parameter estimation.

* These were largely discussed from the frequentist perspective
(i.e., Maximum Likelihood)
* |In that case, you wanted to calculate the probability of the
observed data under a model:
» P(Data | Ho)
e For parameter estimation, the goal was to find the parameter

values that maximize this probability (i.e., maximum likelihood
estimate):

. 0 = argmax P(Datalf)
¢

* In Bayesian Statistics, we turn this around!
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Bayesian Statistics

* Main reasons to use Bayesian Statistics:
* to account for previous knowledge about a parameter

* |logically update our knowledge about a parameter
after we observe data

* make formal probability statements about the
parameter

* t0 specity model assumptions and check model
quality/sensitivity to these assumptions in a
straightforward way.
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Bayesian Statistics

e Bayesians treat unobserved data and unknown
parameters in similar ways:

* Each has a probabillity distribution!
* |n a Bayesian model, we will need two things:

* A likelihood function describing the probability of the
data given the parameter values

* A prior distribution, which describes the behavior of
the parameter(s) unconditional on the data.

* The prior could retlect:

. L
o T

ncertainty about a parameter that is actually fixed

ne variety of values that a truly stochastic parameter

could take.
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Hemophilia Example

 |[n humans, males have an X and a Y chromosome, while
females have two X chromosomes.

* Hemophilia is a genetic disease caused by a recessive X-
iInked mutation.

 Much more common in males! (though still rare)
e Consider a woman with an affected brother.
* \What is the probabillity she is a carrier?
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Hemophilia Example

e \We are told her tfather is not affected, so her mother must
have been a carrier.

* The prior probability of being a carrier for this woman is
50%:

+ P(6=1) = P(6=0) = 0.5

0: Carrier status

(0O=no, 1=yes)

21



Hemophilia Example

* The prior probability of being a carrier for this woman is 50%:
e P(6=1) = P(6=0) = 0.5
e Suppose the woman has a son that is unaffected.

* Let y1=1 and y;=0 denote the case that the son is aftected or
unaftected.

* \We can then write down two probabilities for the son being
unaffected:

e P(y1=0|6=1) =0.5
 P(y1=0|6=0) = 1
 We can now use Bayes' rule to combine the data with the
prior probabillity to produce the posterior probability:

o o P(y1|60=1)P(0=1)
P(0=1]y1) = s e=nrle=1+ P =0)Pe=0) = 0.5
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Hemophilia Example

e \What If the woman has another unaffected son?
* et y,=0 denote the case that the 2nd son is unaftected

* \We can then write down two probabilities for both sons
being unaftected:

* P(y1=0, y>=0 | 0=1) = 0.5%x0.5 =0.25 } This is not exactly
* P(y1=0, y>=0|0=0)=1x1 =1
e Let y=(y1,y2), then Bayes' rule gives use the posterior
probability:

what we want. ..

P(y|0=1)P(6=1)
P(y|0=1)P(0=1)+P(y|60=0)P(0=0)

_ 0.25x%0.5 _
~ 0.s5x0.54+1x0.5 0.2

P(0 = 1Jy)
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Hemophilia Example

 [ntuitively, the more unaffected children the woman has,
the less probable it is that she is a carrier.

* Bayes rule provides a formal mechanism for determining
the extent of the correction!

e A key aspect of Bayesian analysis is the ease with which
sequential analyses can be performed.

e Suppose the woman has a 3rd son, who is also
unaffected.

 [he entire calculation does not need to be redone:
* Use the previous posterior probability as the new prior!

P(0 = 1|y1,42,43) = 55x095ix05 = 0-111
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Setting up a Bayesian Model

* The key to Bayesian Inference is that the unknown
parameter(s) 0 are treated as random variables with prior
distribution f(0).

e Sometimes in Bayesian world the prior is denoted n(0).

* The prior distribution represents what we think we know
about the parameters before we observe any data.

* This is different from likelihood theory, where 0 Is
treated as an unknown constant!

 Given some observed data X=x, we are interested In:
f(x,0) f(x|0)f(0)
0lr) = —
O =75y = T o) f6)de

25




Setting up a Bayesian Model: Asthma mortality

* Let's develop a Bayesian model tor asthma mortality rates
per year for a city with 200,000 people.

* |t is found that 3 people died from asthma.
* This gives a crude estimate of 1.5 deaths per 100k people
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Setting up a Bayesian Model: Asthma mortality

* We can do better!

* et y be the number of deaths, and 0 death rate per 100k
* We can model the likelihood: P(y|0) = Poisson(20).

* What about the prior?!

* In Western countries, typical asthma mortality rates are
around 0.6 per 100Kk.

e \We can use this information!
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Conjugate Priors

* WWhen choosing a prior distribution there are 2 approaches:
* Choose a distribution matching what you know
e Choose a distribution that is convenient.

* Certain probability distributions have a very nice property:

* When you multiply them together, terms combine to give you a nice
functional form.

This is a really nice property in Bayesian statistics, because we are
always multiplying the likelihood function and a prior distribution.
T

nese are called conjugate priors.
* A few examples:

Likelihood Prior

Bernoulli Beta

Binomial Beta

Poisson Gamma
Multinomial Dirichlet
Exponential Gamma

Normal 28 Normal



Setting up a Bayesian Model: Asthma mortality

* \What about the prior?!

* [n Western countries, typical asthma mortality rates are
around 0.6 per 100Kk.

* \We can use this information! Pick a conjugate prior:

* 0 ~ Gamma(3,5) The
. parameters of the prior
Yy ~ POZSSOTZ(ZQ) distribution are referred to

6 ~ Gamma(a, 6) as hyper parameters.
Oly ~ Gammala + vy, 3 + 2)
y=3
o ATTTR o ,
== i ]
CIC) O: lﬂ/{ PN —— naive guess
o ] | | |

I I
00 05 10 15 20 25 3.0

asthma mortality rate 29



Setting up a Bayesian Model: Asthma mortality

 What if we get more data”!

e Suppose we follow the same city for 10 years, and see a
total of 30 deaths due to asthma.

y; ~ Poisson(20)
0 ~ Gamma(a, B)

10
0ly ~ Gamma (a —- Zyi, B+ 2n>

1=1
] y=3 y=30
> 00: [:@\5\5 —— Sim. Posterior > - __"".!!f\ —— Sim. Posterior
i / N — True Posterior | ‘3 © ' —— True Posterior
qc) — JA{ TmmT —— naive guess GCJ - —— naive guess
= | | | | | = | | | | | |
00 05 10 15 20 25 3.030 00 05 10 15 20 25 30

asthma mortality rate asthma mortality rate



Setting up a Bayesian Model: Asthma mortality

e \We are often interested in these summaries of the
posterior distribution:

- Posterior mean ("average value”)
- Posterior mode (“most probable value”)
- High posterior density interval (analog of confidence

interval)
y=3 y=30
> 00: [:@\5\5 — Sim. Posterior > - __"".!!f\ — Sim. Posterior
i / N — True Posterior | ‘3 © ' —— True Posterior
qc) — JA{ TmmT —— naive guess GCD - —— naive guess
= | | | | | = | | | | | |
00 05 10 15 20 25 3.031 o0 05 10 15 20 25 30

asthma mortality rate asthma mortality rate



Two More Examples

* The examples we've examined so tfar had nice closed
form solutions (thanks conjugate priors!).

 Thisisn't always the case!!
* Bayesian clustering in population genetics
e Bayesian protein structure prediction

e But first a bit more background.

32



Bayesian Inference Example

® Data: Y, Yo, ..., Yn ~ N(u, 0¢),and a non-informative
prior: mo(u, 0%) x 1/0*

® |oint posterior:

(1, 0% ]y) o (%)WH X exp{ 2 _M)Q}

O 2(72

® This is not the form of any standard probability
distribution...

® Suppose we just wanted the posterior mean
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Monte Carlo Integration

® The definition of the mean of a distribution is:
E(X) = /QZ‘TF(QZ‘)dZE
® This can be generalized to any function #:

E(h(X)) = /h(x)w(x)d:ﬁ

® But this can sometimes be hard to evaluate!

34



Monte Carlo Integration

® | et’s take a random sample XD, X2 XN ~ 7(x).

® |[f these are independent samples, then by the law of
large numbers:

iy = %i\;h (X(i)) s B(h(X))

m /N — o0

® This is Monte Carlo (MC) integration.
® This holds for (almost) any proposal distribution 7t(x).

® Of course, some proposal distributions are better than
others...
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Markov Chain Monte Carlo

® Back to our goal: determine the posterior distribution

(0 | y)!

® | et’s simplify to start out, and just write our target
distribution as 7(x).

® Metropolis et al (1953) solved the problem for a
symmetric proposal distribution, and Hastings (1970)
generalized the solution to all distributions.

® This solution (the Metropolis-Hastings algorithm) is
what was originally referred to as MCMC.
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Metropolis Algorithm

® At each iteration t:

| .Sample y ~ g(ylx®).

“Candidate” Symmetric “Proposal”

point distribution: g(y|x) = g(x|y)

2.Calcu|ate acceptance ratio: 7 = Wzﬁt)))

ith probability min(1,r)
3.Set R ’
v () else

4.Repeat m times.
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STRUCTURE Setup

® You start with a sample of individuals with genotypes

® Are they from a single homogeneously mixing
population!?

® |[f there is substructure in your data, how many
populations contributed to your sample?

® We refer to this as the “K problem”...
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Distance-Based methods

HIV-2 subtype A

® There are many non-parametric
models for identifying population
structure in a dataset. "
® Neighbor Joining s e

® hierarchical clustering

e PCA

® What are some of the problems
with distance-based methods!?
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Model-Based Methods

® Assumes that individuals are random draws from
some parametric model.

® |[nference for the parameters corresponding to each
cluster is then done jointly with inference for the
cluster membership of each individual.
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Population Structure of Asia

[ 1Altaic

B Sino-Tibetan
" Hmong-Mien
M Tai-Kadai

B Austro-Asiatic
B Austronesian
M Papuan

B Dravidian

[l Indo-European
M Niger-Congo

100

100

100

100

100

100

100

100

K= 14

1D Location |Latitude | Longitude | Ethnicity Language | size
100 JP-RK__ | Japan 26.5 127.9 | Ryukyuan | Okinawan 49
100 JP-ML | Japan 35.7 139.8 | Japanese Japanese | 71
i JPT Japan __ [35.7 1398 | Japanese | Japanese | 44
m:?.s KR-KR | Korea 36.9 127.5 | Korean Korean T
“‘m B cHe China 40.0 116.4 [ Han Chinese | 45 [T
568 B CN-SH | China 31.2 121.5 | Han Chinese |21 |
i B TW-HA | Taiwan _ |25.0 1215 [ Han MinNan | 48 =
\o B TW-HB | Taiwan  |25.0 121.5 | Han Hakka 32 =
B SG-CH | Singapore |1.4 103.8 | Han MinNan 30 | ]
100 B CN-GA | China 23.3 113.5 | Han__ Cantonese | 30 | | |
o = | CN-HM China 26.3 108.7 | Hmong Hmong | 26 |
100 P TH-HM Thailand |18.6 98.1 | Hmaong Hmong 20 J
s [ TH-YA | Thailand [20.0 100.2 | Yao lu-Mien 19 i |
66 Wi cnNcc [china  [24.4 110.2 | Zhuang Zhuang | 26 1l
100 B cn-a China 18.9 109.8 | Jiamao Jiamao | A |
100 TH-TL Thailand [19.2 100.9 | Tai Lue Lue | 20 I
100 ; | TH-TY | Thailand [18.4 98.9 | Tai Yong Tai Yong 18 11
TH-TK | Thailand [18.6 98.9 | Tai Kern TaiKen | 18 1|
B TH-TU | Thailand [19.0 99.0 | Tai Yuan Tai Yuan | 20 11
100 . TH-MA Thailand [18.7 100.5 | Miabri Milabri . 18
74 69 B THIN [ Thailand [19.1 100.9 [ HTin Mal 18 1]
i I,J.‘H.-.P.E. Thailand 204 [ 99.9 Plang Blang | 18 l
69 B cn-wA | china 22.8 100.2 Wa Wa 56 1l
B TH-LW | Thailand [18.4 98.1 | Lawa Lawa | 19 |
100 B TH-KA | Thailand _[18.0 98.4 | Karen Karen | 20 1
L& l’ CN-JN | China 22,0 101.0 Jinuo Jinuo | 29 |
a3 . TH-PL Thailand [19.9 99.2 | Palong Palong 18 _.
100 » M| AX-ME | Pacific  |-5.8 155.1 | Melanesian | Nasioi | s
100 AL B8 ID-AL | Indonesia [83  [1247  [Alorese  |[Alor | 19 | |
100 B[ iD-LE Indonesia |-8.3 124.7 | Lembata Lembata | 19 |
100 B ID.LA | Indonesia |-8.3 123.0 | Lamaholot | Lamaholot 20 I
1:; B[ 1D-s0 | Indonesia |-8.6 120.1 | Manggarai | Manggarai 19 1l
B[ ID-RA__ | Indonesia |-8.7 1205 | Manggarai | Manggarai | 17 i
¥ ID-sB Indonesia |-9.8 120.0 | Kambera Kambera 20 Il
81 [100 , B[ PI-AG Philippines 13.7 123.3 | Negrito Agta | 8 |
57\ | PI-AE Philippines 14.9 120.2 | Negrito Aeta 8 |
e [ B Pl-mw Phinppi_nﬁs.?_ 125.6 | Negrito Mamanwa | 19 |
B PR Philippines 13.0 121.1 | Negrito Iraya | 9 1
00 . B/ PI-AT | Philippines 11.9 1220 | Negrito Ati | 23 I
100 100, B[ AX-AM | Taiwan _ [23.7 121.4 Ami Ami 10 |
100A W AX-AT Taiwan 24.6 121.4 Atayal Atayal 10 m
.?: B PIUB Philippines 17.2 1219 | Urban llocano 20 i
ah" B PLUN | Philippines146  [1210  |Urban  |Tagalog | 19 | =
o] P\ W PLUI Philippin::E,ﬂ 122.1 | Urban Visaya 20 |H
t A~ B PI-MA Philippines| 8.2 125.9 | Manobo Manobo 18 1
60 B pmT Indonesia |-0.3 98.4 | Mentawai Mentawai | 15 |
B[ ID-TR Indonesia |-4.7 119.7 | Toraja Toraja | 20 |
gt B ip-mL Indonesia |-3.0 104.7 | Malay Malay | 12 15
B[ ID-KR | Indonesia 1.5 100.0 | Batak Karo | Batak Karo 17 Il
100/ 40g B ID-TB | Indonesia 2.3 99.1 Batak Batak Toba 20 | _|.I
%0 B[ ip-DY Indonesia |1.2 116.7 Dayak Benuak 12 | I
100 B MY-MN | Malaysia |2.8 102.2 | Malay Minangkabau| 20 i1
B[ sGMY | Singapore [1.4 103.8 | Malay Malay | 30 1l
Bl MY-KN | Malaysia |5.3 102.0 | malay  Malay | 18 n
2| B iD-JA Indonesia |-6.2 106.7 | Javanese Javanese 34 |
7% 78 B ID-Jv Indonesia |-7.3 110.4 | Javanese Javanese 19 | |
74 B ID-su_ | Indonesia |-6.2 106.7 | Sundanese | Sunda | 25 i
B MY-BD | Malaysia [1.4 110.2 | Bidayuh Jagoi | 50 [ ——!
76 B MY-TM | Malaysia |2.9 102.1 | Proto-Malay | Temuan 49 [ ] |
o0 . MY-JH Malaysia |5.4 101.1 | Negrito Jehai 50 1
400 B my-Ks Malaysia |5.7 100.9 | Negrito Kensiu .30 |
M THMO | Thailand [18.5 | 98.9 | Mon. _Mon | 19 L
NN India 30.4 79.2 | Tharu Pahari | 20 ]|
B inTE | India 34.7 76.5 | Ladakhi Spiti 23 =)
[ CN-UG | China 371 86.6 | Uyghur Uyghur 26 |
l}ngs_.._ma"_-_ 153|778 | Upper-caste | Telugu | 24 |
52 B sGiD | singapore |1.4 103.8 | India origin | Tamil 30 |
Bl in-w India 26.7 74.0 | Bhil Bhili | 25 |
52 BIINEL | India 23.0 88.2 | Upper-caste | Bengali | 16 | I
50 B[ In-sP India 29.1 76.5 | Upper-caste | Hindi | 23 |
B IN-wL India 19.7 75.9 | Upper-caste | Marathi 14 |
52 B[ IN-NL India 26.8 B1.4 | Upper-caste | Hindi | 15
BlINIL | India 26.7 74.0 _| Upper-caste | Hindi L 15
B ceu uUsAa 51.5 0.1 European English 60
[ | Migeria 7.4 3.9 | Yoruba Yoruba . B0

HUGO Pan-Asian
SNP Consortium.
Science (2009).
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STRUCTURE Setup

® Detecting population structure in a sample is really a missing
data problem!

® |f we knew:

® The frequency of every allele in each ancestral population
® The ancestral population that each person derives from

® Then we could write down a simple likelihood function for our
data

® Assuming sites are independent, we could just multiply the
frequencies of all alleles in the ancestral population.

® |f we didn’t know the ancestral population, we could iterate
through all populations, and choose the population with

maximum likelihood!
42



STRUCTURE Setup

® Of course, we don’t know either of those key elements!

® |n fact, because of genetic drift, knowing the ancestral
population may not even be that helpful.

e MCMC to the rescue!
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STRUCTURE Setup

® X = genotypes of the sampled individuals
® / = the (unknown) populations of origin of individuals

® P = the (unknown) allele frequencies in all populations

® Assumptions:

® Hardy-Weinberg Equilibrium within populations (but
not necessarily between populations)

® Complete linkage equilibrium between loci within
populations (i.e., independence).
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STRUCTURE Setup

Joint probability of pop

® Goal: Pr(Z, P | X) membership & their fregs
® x Pr(X1Z,P)Pr(Z, P)
® =Pr(X|Z,P) Pr(Z) Pr(P)

@ Pr(Z, Pl X) x Pr(X | Z, P)Pr(Z) Pr(P)

given obs. genotypes
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STRUCTURE Setup

® Our goal is to construct a Markov chain O, 00 .
with stationary distribution 7t(0) = Pr(Z, P, Q | X).

® This means that for m very large, 0™ ~ 77(0)

® And for c very large, 00 QUn+c) Qin+2c) are
independent draws from 7(0).

® m is referred to as the burn-in

® C is referred to as the thinning interval.
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STRUCTURE Setup

® Suppose we have N diploid individuals genotyped at L
loci.

® Each individual comes from one of K populations.

(x§"D, x{*2) = genotype of the ith individual at the /th locus,
wherei1 =1,2,..., Nand /=1, 2,..., L;
ZY = population from which individual i originated;

Pu = trequency of allele j at locus / 1n population £,
where k=1,2,..., Kand;j=1,2,...,J,

® |[f we knew which population each individual came
from, then we could write:

Pr(xi™ = j|Z, P) = pa,
® But we don't...
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STRUCTURE Setup

® Pr(Z, PIX) x Pr(XI|Z, P)Pr(Z) Pr(P)
® We don’t know anything about the population of
origin.
® What's a good prior distribution to use?
Pr(2? = k) = 1/K,

® We don’t know anything about the population allele
frequencies.
® What's a good prior distribution to use?
P~ D\, Ny, oo, }\J]),

® Dirichlet distribution! (i.e., generalized Beta)
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STRUCTURE Setup

® Step |l:Pretend we know population membership of
each individual, and sample population frequencies.

® Step 2: Pretend we know population allele
frequencies, and sample population membership.

® This 1s a special type of MCMC called a Gibbs
sampler.
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STRUCTURE Setup

® Step |:Sample P™ from Pr(P | X, Z(m-D)

® |f Pr(P) ~ Dir(A1, ..., \) and Pr(X | Z, P) = allele
frequencies, then

® Pr(P|X, ZmD) ~ Dir(M+nu1, ..., Ai+tnw)

® Step 2:Sample Z(M from Pr(Z | X, P(m)

® Key insight 1s that
Pr(x?|P, A2 = k)

Pr(2A” = k| X, P) = . . |
" X B = e BP0 = 1)

50
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Fig. 1. Neighbor-joining tree from pairwise D?
genetic distances between populations (65). African
population branches are color-coded according to
language family classification. Population clusters
by major geographic region are noted; bootstrap
values above 700 out of 1000 are indicated by
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Fig. 2. Principal com-
ponents analysis (22)
created on the basis of
individual genotypes.
(A) Global data set and
(B) African data set.
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Inferential Structure Determination

* Major challenge in the determination of three-
dimensional macromolecular structures:

* Experimental data are indirect.

* \We observe physical effects that depend on the atomic
geometry and use a forward model to relate the
observed data to the atomic coordinates.

* Challenges:
* Inherently degenerate
e data often incomplete
* data/model rife with uncertainties €

* |ll-posed problem: no single
structure!!

e Bayesian model can help overcome these!

55

Rieping, W., Habeck, M., & Nilges, M. (2005). Science 309(5732), 303—306



Inferential Structure Determination

Rather than try to obtain a single best p

n this “sausage plot”, the thickness of t

Fyn SH3 domain

56

Rieping, W., Habec

Bayesian statistics can be used to obtal

rotein structure,
N an ensemble.

ne sausage IS

oroportional to the atom-wise error bars from the model.

k, M., & Nilges, M. (2005). Science 309(5732), 303—-306



Inferential Structure Determination

e Goal:
e Get a score (P;) for every possible conformation (X;)

 Rank scores, and keep the best ones

20 most likely
conformations

Fyn SH3 domain
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Inferential Structure Determination

e Goal:
* Get a score (P;) for every possible conformation (X))
 Rank scores, and keep the best ones
* |n this case:
 P;=P(X; | D, I): Probability of a conformation given the
data (D) and prior information (/).
* As usual, apply Bayes’ Rule!

* P(X|D,I) x P(D|X,1)P(X|I)

* The likelihood P(D|X,]) combines a forward model that relates
observed data to atomic coordinates and an error distribution.

* The prior distribution P(X|I) uses prior information about
bimolecular structures, determined by physical energy and
temperature of the system.
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Inferential Structure Determination

P(X,¢§

e The full mode

D,I) < P(D|X, & I)P(X[I)p(¢|1)

evaluated incorporates nuisance

parameters (E&={y,c}).
* [Inference is then performed using MCMC.

4 random number generators A

Calculate

likelihood:
P(DIX.S,1)

.

A

Nuisance parameters:

AHD (X0, 5 )
o) o p (o] x (B, 4 (+D))

Hybrid Monte Carlo
x&+1) o p (th{k"'l}, J(k-l-l))

.

Coordinates:

20 most likely

— ya

t—— [

conformations

/— exchange B
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