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Big Data Era:  Drinking from the fire hose
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What are statistics?

• The	collec(on,	organiza(on,	analysis,	
interpreta(on,	and	presenta(on	of	data	

• Biosta(s(cs	represents	the	applica(on	of	
sta(s(cs	to	biomedical	research	

• Three	main	branches	of	sta(s(cs	
– Descrip(ve	sta(s(cs	
– Inferen(al	sta(s(cs	
– Theore(cal	sta(s(cs

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Background

• We	are	all	aware	of	what	the	word	“probability”	
means,	here	are	some	defini(ons:	

– a	priori	
• The	basic	no(on	in	our	heads:	flipping	a	coin,	rolling	die	

– 	frequen(st	
• Data-driven,	based	on	observed	frequency	across	experiments	

– 	subjec(ve	
• Combina(on	of	the	above

Probability

LikelihoodChance

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Outline

•There is no way to cover all of Bayesian statistics in a single 
lecture!! 

•Basic probability 
•Addition and multiplication rules 
• Independence 
•Joint and conditional probabilities 
•Bayes' Rule 

•Bayesian statistical modeling and inference 
•Markov Chain Monte Carlo (MCMC)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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B

Simple Example

•Let’s consider rolling a die. 
•We are interested in two events: 

•A:  we roll a number >4. 
•B:  we roll an even number 

•It is easy to calculate the probability of each event: 
•P(A) = 2/6 = 0.333 
•P(B) = 3/6 = 0.5

A
65 4, 2

1, 3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Simple Example

•What is the probability of A or B? 
•Addition Rule: 

• P(A or B) = P(A) + P(B) - P(A and B)

A B
65 4, 2

1, 3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Independence and the Multiplicative Rule

•Let’s introduce the idea of conditional probability. 
•Consider the effect of one of these events on another:  
What is the probability that we will see an even number 
if we already know that we have thrown a number larger 
than 4? 

•This can be written down as:  P(B | A).

A B
65 4, 2

1, 3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Independence & Conditional Probability 

•The probability of event B given event A := Pr(B|A) 
•It is a conditional probability since it depends on A having 
occurred. 
– If A occurred, then we must have thrown either a “5” or a “6” 
– The probability of an even number given that you have 
thrown a number larger than 4, is ½.  

– This is the conditional probability of B given A = Pr(B|A) 
•The unconditional probability of B is Pr(B) = 3/6 = ½

A B
65 4, 2

1, 3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Independence (cont’d)

• The multiplication rule for probabilities 
– Pr(A and B) = Pr(A)×Pr(B|A) = Pr(B)×Pr(A|B)  

– IF two events A and B are independent, then: 

• Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B) 

• Therefore:  Pr(A and B) = Pr(A)×Pr(B)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Law of Total Probability

•What if we want to know the overall probability of an event? 
– What is the Pr(B)? 

• The Law of Total Probability:
– Pr(B) = Pr(B|A)×Pr(A)+Pr(B|Ac)×Pr(Ac) 

              = 1/2×1/3 + 1/2×2/3 
    = 1/6+2/6 = 1/2 
•Implication: Using just a  
little bit of algebra, we can  
now come up with explicit  
forms for conditional  
probability!

A B

65 4, 2

1, 3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Hypothetical Example

• Suppose TSA imposes mandatory Ebola testing of 
all travelers on domestic flights in the USA. 

• You go on a flight, and are tested for Ebola. 

• Your test comes back positive...

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Hypothetical Example

• What is the probability that you are actually 
infected with Ebola? 

• Suppose the sensitivity of the test is high:  
• 99.9% of people infected with Ebola test 

positive. 
• Suppose the specificity of the test is also high:   

• 99.9% of people not infected with Ebola test 
negative. 

• Given your positive test and this information, 
should you be quarantined?!

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Hypothetical Example

• Bayes' Rule comes to the rescue!! 
• Let A be the event “Have Ebola” 
• Let B be the event “Test Positive for Ebola” 
• We want P(A | B) in terms we can easily quantify. 
• Recall:  P(A and B) = P(A|B)×P(B) = P(B|A)×P(A)

“Probability of having 
Ebola given positive 

test”

“Probability of having 
positive test given you 

are infected with Ebola”: 
Sensitivity “Probability of being 

infected with Ebola”

“Probability of testing 
positive for Ebola”

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Hypothetical Example

• A = “Have Ebola infection”;  B = “Test Positive for Ebola” 
• In the USA, P(A) = Pr(have Ebola) ≈ 4/316,100,000=1.3e-8. 
• Sensitivity: P(B|A) = 0.999;  Specificity: P(BC|AC)=0.999 
 
 
 
 
 

• Thus, there is only a small chance you are actually 
infected, despite the high sensitivity and specificity!!

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

= 0.999⇥1.3e�8
0.999⇥1e�8+0.001⇥(1�1.3e�8)

= 1.26e� 5
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• A = “Have HIV infection”;  B = “Test Positive for HIV” 
• In Liberia, P(A) = Pr(have Ebola) ≈ 4665/4,294,000=0.0011. 
• Sensitivity: P(B|A) = 0.999;  Specificity: P(BC|AC)=0.999 
 
 
 
 
 
 

• Thus, there is 52.07% chance you are actually infected, 
which is a much better test.   

• The important difference is the prior probability of Ebola!

Hypothetical Example
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

= 0.999⇥0.0011
0.999⇥0.0011+0.001⇥(1�0.0011)

= 0.5207
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• In this class, you previously talked about Hypothesis Testing 
and Parameter estimation. 

• These were largely discussed from the frequentist perspective 
(i.e., Maximum Likelihood) 

• In that case, you wanted to calculate the probability of the 
observed data under a model: 

• P(Data | H0) 
• For parameter estimation, the goal was to find the parameter 

values that maximize this probability (i.e., maximum likelihood 
estimate):  

•   

• In Bayesian Statistics, we turn this around!

Bayesian Statistics
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ˆ✓ = argmax

✓
P (Data|✓)
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• Main reasons to use Bayesian Statistics: 
• to account for previous knowledge about a parameter 
• logically update our knowledge about a parameter 

after we observe data 
• make formal probability statements about the 

parameter 
• to specify model assumptions and check model 

quality/sensitivity to these assumptions in a 
straightforward way.

Bayesian Statistics
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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• Bayesians treat unobserved data and unknown 
parameters in similar ways: 

• Each has a probability distribution! 
• In a Bayesian model, we will need two things: 

• A likelihood function describing the probability of the 
data given the parameter values 

• A prior distribution, which describes the behavior of 
the parameter(s) unconditional on the data. 

• The prior could reflect: 
• Uncertainty about a parameter that is actually fixed 
• The variety of values that a truly stochastic parameter 

could take.

Bayesian Statistics
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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• In humans, males have an X and a Y chromosome, while 
females have two X chromosomes. 

• Hemophilia is a genetic disease caused by a recessive X-
linked mutation.   

• Much more common in males!  (though still rare) 
• Consider a woman with an affected brother. 
• What is the probability she is a carrier?

Hemophilia Example
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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• We are told her father is not affected, so her mother must 
have been a carrier. 

• The prior probability of being a carrier for this woman is 
50%: 

• P(θ=1) = P(θ=0) = 0.5

Hemophilia Example
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

21

θ: Carrier status  
(0=no, 1=yes)



• The prior probability of being a carrier for this woman is 50%: 
• P(θ=1) = P(θ=0) = 0.5  

• Suppose the woman has a son that is unaffected. 
• Let y1=1 and y1=0 denote the case that the son is affected or 

unaffected. 
• We can then write down two probabilities for the son being 

unaffected: 
• P(y1=0 | θ=1) = 0.5 
• P(y1=0 | θ=0) = 1 

• We can now use Bayes’ rule to combine the data with the 
prior probability to produce the posterior probability: 

Hemophilia Example
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

P (✓ = 1|y1) = P (y1|✓=1)P (✓=1)
P (y1|✓=1)P (✓=1)+P (y1|✓=0)P (✓=0) = 0.5

22



• What if the woman has another unaffected son? 
• Let y2=0 denote the case that the 2nd son is unaffected 
• We can then write down two probabilities for both sons 

being unaffected: 
• P(y1=0, y2=0 | θ=1) = 0.5×0.5 =0.25 
• P(y1=0, y2=0 | θ=0) = 1×1 = 1 

• Let y=(y1,y2), then Bayes’ rule gives use the posterior 
probability: 

Hemophilia Example
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

P (✓ = 1|y) = P (y|✓=1)P (✓=1)
P (y|✓=1)P (✓=1)+P (y|✓=0)P (✓=0)

= 0.25⇥0.5
0.s5⇥0.5+1⇥0.5 = 0.2

23

} This is not exactly 
what we want…



• Intuitively, the more unaffected children the woman has, 
the less probable it is that she is a carrier.   

• Bayes rule provides a formal mechanism for determining 
the extent of the correction! 

• A key aspect of Bayesian analysis is the ease with which 
sequential analyses can be performed. 

• Suppose the woman has a 3rd son, who is also 
unaffected. 

• The entire calculation does not need to be redone: 
• Use the previous posterior probability as the new prior!

Hemophilia Example
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

P (✓ = 1|y1, y2, y3) = 0.5⇥0.2
0.5⇥0.2+1⇥0.8 = 0.111
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• The key to Bayesian Inference is that the unknown 
parameter(s) θ are treated as random variables with prior 
distribution f(θ). 

• Sometimes in Bayesian world the prior is denoted π(θ). 
• The prior distribution represents what we think we know 

about the parameters before we observe any data. 
• This is different from likelihood theory, where θ is 

treated as an unknown constant! 
• Given some observed data X=x, we are interested in:

Setting up a Bayesian Model
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

f(✓|x) = f(x, ✓)

f(x)
=

f(x|✓)f(✓)R
f(x|✓)f(✓)d✓

25



• Let’s develop a Bayesian model for asthma mortality rates 
per year for a city with 200,000 people. 

• It is found that 3 people died from asthma. 
• This gives a crude estimate of 1.5 deaths per 100k people

Setting up a Bayesian Model: Asthma mortality
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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• We can do better!   
• Let y be the number of deaths, and θ death rate per 100k 
• We can model the likelihood: P(y|θ) = Poisson(2θ). 
• What about the prior?! 
• In Western countries, typical asthma mortality rates are 

around 0.6 per 100k.   
• We can use this information!

Setting up a Bayesian Model: Asthma mortality
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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• When choosing a prior distribution there are 2 approaches: 
• Choose a distribution matching what you know 
• Choose a distribution that is convenient. 

• Certain probability distributions have a very nice property: 
• When you multiply them together, terms combine to give you a nice 

functional form. 
• This is a really nice property in Bayesian statistics, because we are 

always multiplying the likelihood function and a prior distribution.   
• These are called conjugate priors. 
• A few examples:

Conjugate Priors
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Likelihood Prior
Bernoulli Beta
Binomial Beta
Poisson Gamma

Multinomial Dirichlet
Exponential Gamma

Normal Normal28



• What about the prior?! 
• In Western countries, typical asthma mortality rates are 

around 0.6 per 100k.   
• We can use this information!  Pick a conjugate prior: 
• θ ~ Gamma(3,5)

Setting up a Bayesian Model: Asthma mortality
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

✓ ⇠ Gamma(↵,�)
✓|y ⇠ Gamma(↵+ y,� + 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
asthma mortality rate

0.
0

0.
8

D
en

si
ty

y=3
Sim. Posterior
True Posterior
naive guess

The 
parameters of the prior 

distribution are referred to 
as hyper parameters.

y ⇠ Poisson(2✓)
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• What if we get more data?! 
• Suppose we follow the same city for 10 years, and see a 

total of 30 deaths due to asthma.

Setting up a Bayesian Model: Asthma mortality
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

✓ ⇠ Gamma(↵,�)

✓|y ⇠ Gamma

 
↵+

10X

i=1

yi,� + 2n

!

0.0 0.5 1.0 1.5 2.0 2.5 3.0
asthma mortality rate

0.
0

0.
8

D
en

si
ty

y=3
Sim. Posterior
True Posterior
naive guess

0.0 0.5 1.0 1.5 2.0 2.5 3.0
asthma mortality rate

0.
0

1.
0

D
en

si
ty

y=30
Sim. Posterior
True Posterior
naive guess

yi ⇠ Poisson(2✓)
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• We are often interested in these summaries of the 
posterior distribution: 

• Posterior mean (“average value”) 
• Posterior mode (“most probable value”) 
• High posterior density interval (analog of confidence 

interval)

Setting up a Bayesian Model: Asthma mortality
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

0.0 0.5 1.0 1.5 2.0 2.5 3.0
asthma mortality rate

0.
0

0.
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True Posterior
naive guess

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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0
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si
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Sim. Posterior
True Posterior
naive guess
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• The examples we’ve examined so far had nice closed 
form solutions (thanks conjugate priors!). 

• This isn’t always the case!! 
• Bayesian clustering in population genetics 
• Bayesian protein structure prediction 

• But first a bit more background.

Two More Examples
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

32



• Data:  Y1, Y2, ..., Yn ~ N(μ, σ2), and a non-informative 
prior:  

• Joint posterior:  
 

• This is not the form of any standard probability 
distribution…

• Suppose we just wanted the posterior mean

33

⇡0(µ,�
2) / 1/�2

⇡(µ,�2|y) /
✓

1

�2

◆n/2+1

⇥ exp

⇢
�
P

(yi � µ)2

2�2

�

Bayesian Inference Example
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •



• The definition of the mean of a distribution is:  
 

• This can be generalized to any function h:  
 

• But this can sometimes be hard to evaluate!

34

E(X) =

Z
x⇡(x)dx

E(h(X)) =

Z
h(x)⇡(x)dx

Monte Carlo Integration
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •



• Let’s take a random sample X(1), X(2), ..., X(N) ~ π(x).

• If these are independent samples, then by the law of 
large numbers:  
 
 

• This is Monte Carlo (MC) integration.

• This holds for (almost) any proposal distribution π(x).

• Of course, some proposal distributions are better than 
others...

35

h̄N =
1

N

NX

i=1

h
⇣
X(i)

⌘
�!

limN!1
E(h(X))

Monte Carlo Integration
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •



• Back to our goal:  determine the posterior distribution 
π(θ | y)!

• Let’s simplify to start out, and just write our target 
distribution as π(x).

• Metropolis et al (1953) solved the problem for a 
symmetric proposal distribution, and Hastings (1970) 
generalized the solution to all distributions.

• This solution (the Metropolis-Hastings algorithm) is 
what was originally referred to as MCMC.

36

Markov Chain Monte Carlo
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •



• At each iteration t:

1.Sample y ~ q(y|x(t)).  
 
 

2.Calculate acceptance ratio:  
 

3.Set  

4.Repeat m times.
37

x

(t+1)
=

(
y with probability min(1, r)

x

(t)
else

“Candidate” 
point

Symmetric “Proposal” 
distribution:  q(y|x) = q(x|y)

Metropolis Algorithm
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

r = ⇡(y)

⇡(x(t))



• You start with a sample of individuals with genotypes

• Are they from a single homogeneously mixing 
population?

• If there is substructure in your data, how many 
populations contributed to your sample?

• We refer to this as the “K problem”...

38

STRUCTURE Setup
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •



• There are many non-parametric 
models for identifying population 
structure in a dataset.

• Neighbor Joining

• hierarchical clustering

• PCA

• What are some of the problems 
with distance-based methods?

39

The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue 5 4.09, second eigenvalue 5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n . 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses a well-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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• Assumes that individuals are random draws from 
some parametric model.

• Inference for the parameters corresponding to each 
cluster is then done jointly with inference for the 
cluster membership of each individual.
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(Fig. 1 and figs. S1 to S13), population phy-
logenies (Fig. 1 and figs. S27 and S28), and PCA
results (Fig. 2) all show that populations from the
same linguistic group tend to cluster together. A

Mantel test confirms the correlation between lin-
guistic and genetic affinities (R2 = 0.253;P<0.0001
with 10,000 permutations), even after controlling
for geography (partial correlation = 0.136; P <

0.005with 10,000 permutations). Nevertheless, we
identified eight population outliers whose linguistic
and genetic affinities are inconsistent [Affymetrix-
Melanesian (AX-ME), Malaysia-Jehai (MY-JH)

Fig. 1. Maximum-likelihood tree of 75 populations. A hypothetical most-
recent common ancestor (MRCA) composed of ancestral alleles as inferred
from the genotypes of one gorilla and 21 chimpanzees was used to root the
tree. Branches with bootstrap values less than 50% were condensed.
Population identification numbers (IDs), sample collection locations with
latitudes and longitudes, ethnicities, language spoken, and size of pop-
ulation samples are shown in the table adjacent to each branch in the tree.
Linguistic groups are indicated with colors as shown in the legend. All

population IDs except the four HapMap samples are denoted by four
characters. The first two letters indicate the country where the samples
were collected or (in the case of Affymetrix) genotyped, according to the
following convention: AX, Affymetrix; CN, China; ID, Indonesia; IN, India;
JP, Japan; KR, Korea; MY, Malaysia; PI, the Philippines; SG, Singapore; TH,
Thailand; and TW, Taiwan. The last two letters are unique IDs for the
population. To the right of the table, an averaged graph of results from
STRUCTURE is shown for K = 14.
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• Detecting population structure in a sample is really a missing 
data problem!

• If we knew:

• The frequency of every allele in each ancestral population

• The ancestral population that each person derives from

• Then we could write down a simple likelihood function for our 
data

• Assuming sites are independent, we could just multiply the 
frequencies of all alleles in the ancestral population.

• If we didn’t know the ancestral population, we could iterate 
through all populations, and choose the population with 
maximum likelihood!
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• Of course, we don’t know either of those key elements!

• In fact, because of genetic drift, knowing the ancestral 
population may not even be that helpful.

• MCMC to the rescue!

43

STRUCTURE Setup
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •



• X = genotypes of the sampled individuals

• Z = the (unknown) populations of origin of individuals

• P = the (unknown) allele frequencies in all populations

• Assumptions:

• Hardy-Weinberg Equilibrium within populations (but 
not necessarily between populations)

• Complete linkage equilibrium between loci within 
populations (i.e., independence).
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• Goal:  Pr(Z, P | X)

• ∝ Pr(X | Z, P) Pr(Z, P)

• = Pr(X | Z, P) Pr(Z) Pr(P)

• Pr(Z, P | X) ∝ Pr(X | Z, P) Pr(Z) Pr(P)
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• Our goal is to construct a Markov chain θ(0), θ(1), ... 
with stationary distribution π(θ) = Pr(Z, P, Q | X).

• This means that for m very large, θ(m) ~ π(θ)

• And for c very large, θ(m), θ(m+c), θ(m+2c),... are 
independent draws from π(θ).

• m is referred to as the burn-in

• c is referred to as the thinning interval.

46

STRUCTURE Setup
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •



• Suppose we have N diploid individuals genotyped at L 
loci.

• Each individual comes from one of K populations.  
 
 
 

• If we knew which population each individual came 
from, then we could write:  

• But we don’t...
47

947Inferring Population Structure

by specifying models (priors) Pr(Z) and Pr(P), for both Assume that before observing the genotypes we have
Z and P. The Bayesian approach provides a coherent no information about the population of origin of each
framework for incorporating the inherent uncertainty individual and that the probability that individual i origi-
of parameter estimates into the inference procedure nated in population k is the same for all k,
and for evaluating the strength of evidence for the in-

Pr(z(i) 5 k) 5 1/K , (3)ferred clustering. It also eases the incorporation of vari-
ous sorts of prior information that may be available, independently for all individuals. (In cases where some
such as information about the geographic sampling lo- populations may be more heavily represented in the
cation of individuals. sample than others, this assumption is inappropriate; it

Having observed the genotypes, X, our knowledge would be straightforward to extend our model to deal
about Z and P is then given by the posterior distribution with such situations.)

We follow the suggestion of Balding and NicholsPr(Z, P|X) ~ Pr(Z)Pr(P)Pr(X|Z, P). (1)
(1995) (see also Foreman et al. 1997 and Rannala

While it is not usually possible to compute this distribu- and Mountain 1997) in using the Dirichlet distri-
tion exactly, it is possible to obtain an approximate bution to model the allele frequencies at each locus
sample (Z(1), P(1)), (Z(2), P(2)), . . . ,(Z(M), P(M)) from Pr(Z, within each population. The Dirichlet distribution
P|X) using Markov chain Monte Carlo (MCMC) meth- D(l1, l2, . . . , lJ) is a distribution on allele frequencies
ods described below (see Gilks et al. 1996b, for more p 5 (p1, p2, . . . , pJ) with the property that these frequen-
general background). Inference for Z and P may then cies sum to 1. We use this distribution to specify the
be based on summary statistics obtained from this sam- probability of a particular set of allele frequencies pkl·ple (see Inference for Z, P, and Q below). A brief introduc- for population k at locus l,
tion to MCMC methods and Gibbs sampling may be
found in the appendix. pkl· z D(l1, l2, . . . , lJl), (4)

independently for each k,l. The expected frequency of
MODELS AND METHODS allele j is proportional to lj, and the variance of this

frequency decreases as the sum of the lj increases. WeWe now provide a more detailed description of our
take l1 5 l2 5 · · · 5 lJl 5 1.0, which gives a uniformmodeling assumptions and the algorithms used to per-
distribution on the allele frequencies; alternatives areform inference, beginning with the simpler case where
discussed in the discussion.each individual is assumed to have originated in a single

MCMC algorithm (without admixture): Equations 2,population (no admixture).
3, and 4 define the quantities Pr(X|Z, P), Pr(Z), andThe model without admixture: Suppose we genotype
Pr(P), respectively. By setting u 5 (u1, u2) 5 (Z, P) andN diploid individuals atL loci. In the casewithout admix-
letting p(Z, P) 5 Pr(Z, P|X) we can use the approachture, each individual is assumed to originate in one of
outlined in Algorithm A1 to construct a Markov chainK populations, each with its own characteristic set of
with stationary distribution Pr(Z, P|X) as follows:allele frequencies. Let the vector X denote the observed

Algorithm 1: Starting with initial values Z(0) for Z (bygenotypes, Z the (unknown) populations of origin of
drawing Z(0) at random using (3) for example), iterate thethe individuals, and P the (unknown) allele frequencies
following steps for m 5 1, 2, . . . .in the populations. These vectors consist of the follow-

ing elements,
Step 1. Sample P(m) from Pr(P|X, Z(m21)).

(x(i,1)
l , x(i,2)

l ) 5 genotype of the ith individual at the l th locus, Step 2. Sample Z(m) from Pr(Z|X, P(m)).
where i 5 1, 2, . . . , N and l 5 1, 2, . . . , L;

z(i) 5 population from which individual i originated; Informally, step 1 corresponds to estimating the allele
pklj 5 frequency of allele j at locus l in population k, frequencies for each population assuming that the pop-where k 5 1, 2, . . . , K and j 5 1, 2, . . . , Jl, ulation of origin of each individual is known; step 2

where Jl is the number of distinct alleles observed at corresponds to estimating the population of origin of
locus l, and these alleles are labeled 1, 2, . . . , Jl. each individual, assuming that the population allele fre-

Given the population of origin of each individual, quencies are known. For sufficiently large m and c, (Z(m),
the genotypes are assumed to be generated by drawing P(m)), (Z(m1c), P(m1c)), (Z(m12c), P(m12c)), . . . will be approxi-
alleles independently from the appropriate population mately independent random samples from Pr(Z, P|X).
frequency distributions, The distributions required to perform each step are

given in the appendix.Pr(x(i,a)
l 5 j |Z, P) 5 pz(i)lj (2)

The model with admixture: We now expand our
model to allow for admixed individuals by introducingindependently for each x(i,a)

l . (Note that pz(i)lj is the fre-
a vectorQ to denote the admixture proportions for eachquency of allele j at locus l in the population of origin

of individual i.) individual. The elements of Q are
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• Pr(Z, P | X) ∝ Pr(X | Z, P) Pr(Z) Pr(P)

• We don’t know anything about the population of 
origin.

• What’s a good prior distribution to use? 

• We don’t know anything about the population allele 
frequencies.

• What’s a good prior distribution to use? 

• Dirichlet distribution!  (i.e., generalized Beta)
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of individual i.) individual. The elements of Q are
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• Step 1: Pretend we know population membership of 
each individual, and sample population frequencies.

• Step 2: Pretend we know population allele 
frequencies, and sample population membership.  

• This is a special type of MCMC called a Gibbs 
sampler.
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• Step 1: Sample P(m) from Pr(P | X, Z(m-1)) 

• If Pr(P) ~ Dir(λ1, ..., λj) and Pr(X | Z, P) = allele 
frequencies, then

• Pr(P | X, Z(m-1)) ~ Dir(λ1+nkl1, ..., λj+nklJ)  

• Step 2: Sample Z(m) from Pr(Z | X, P(m)) 

• Key insight is that  
 

50

958 J. K. Pritchard, M. Stephens and P. Donnelly

Step r. Sample u(m)
r from p(ur|u(m)

1 ), u(m)
2 , . . . , u(m)

r21). then use this to estimate the posterior distribution of
K from (11). An alternative interpretation of this

It is easy to show that if u(m21) z p(u), then u(m) z
method is that model selection is based on penalizing

p(u), and so p(u) is the stationary distribution of this
the mean of the Bayesian deviance by a quarter of its

Markov chain.
variance (cf. Spiegelhalter et al. 1999, who suggested
investigating model fit using a different penalization of

Inference on K, the number of populations the mean of the Bayesian deviance).
We now provide further details regarding our ap-

proach to choosing K (see Inference for the number of
Details of the MCMC algorithmspopulations).

The simplest way of estimating Pr(X|K) is the so-called Algorithm A2: Step 1 may be performed by simulat-
harmonic mean estimator ing pkl· independently for each (k, l), from

pkl·|X, Z z D(l1 1 nkl1, . . . , lJl 1 nklJl), (A6)1
Pr(X|K)

5
#

Pr(Z, P, Q|X, K)
Pr(X|Z, P, Q,K)

dZdPdQ

where
≈

1
M o

M

m51

1
Pr(X|Z(m), P(m), Q(m), K)

. (A1) nklj 5 #{(i,a) : x(i, a)
l 5 j and z(i) 5 k} (A7)

is the number of copies of allele j at locus l observedThis estimator is notoriously unstable, often having in-
in individuals assigned (by Z) to population k.finite variance, and is thus of little use in practice. One

Step 2 may be performed by simulating z(i), indepen-theoretically attractive alternative involves estimating
dently for each i, fromPr(P, Q|X) for some P, Q (Chib 1995; Raftery 1996).

However, our own implementation of versions of this
Pr(z(i) 5 k|X, P) 5

Pr(x(i)|P, z(i) 5 k)
RK

k951Pr(x(i)|P, z(i) 5 k9)
, (A8)approach has turned out to be computationally infeasi-

ble, due to the very high-dimensional parameter space
of our problem. While alternative approaches to esti- where Pr(x(i)|P, z(i) 5 k) 5

p

L
l51 pklx(i,1)pklx(i,2).

mating Pr(X|K), such as variable-dimension MCMC Note that Equation A8 makes an implicit assumption
methods (Green 1995; Stephens 2000a) or importance that an equal fraction of the sample is drawn from each
sampling (DiCiccio et al. 1997), may lead to compu- population. Alternatively, it might be natural to intro-
tationally feasible algorithms, the high-dimensional pa- duce an additional parameter for the fraction of the
rameter space makes designing efficient versions of sample drawn from each population.
these schemes rather challenging. For this reason we AlgorithmA3: Step 1 may be performed by updating
take a more ad hoc approach, which begins by consider- P and Q independently. Updating P is achieved as be-
ing the Bayesian deviance fore, using Equation A6 but where the definition (A7)

of nklj is modified in the obvious way toD(Z, P, Q) 5 22 log Pr(X|Z, P, Q). (A2)

nklj 5 #{(i, a) : x(i,a)
l 5 j and z(i,a)l 5 k}. (A9)The conditional mean and variance of D given X are

easily estimated using Updating Q involves simulating from
E(D(Z, P, Q)|X) q(i)|X, Z z D(a 1 m(i)

1 , . . . , a 1 m(i)
K ), (A10)

≈
1
M o

M

m51

22 log Pr(X|Z(m), P(m), Q(m)) 5 m̂, say, (A3) where m(i)
k is the number of allele copies in individual

i that originated (according to Z) in population k:
and

m(i)
k 5 #{(l, a) : z(i,a)l 5 k}. (A11)

Var(D(Z, P, Q)|X)
Step 2 may be performed by simulating zl(i,a), indepen-
dently for each i, a, l, from≈

1
M o

M

m51

(22 log Pr(X|Z(m), P(m), Q(m)) 2 m̂)2 5 ŝ2, say.

(A4) Pr(z(i,a)l 5 k|X, P) 5
q(i)
k Pr(x(i,a)

l |P, z(i,a)l 5 k)
RK

k951q(i)
k9 Pr(x(i,a)

l |P, z(i,a)l 5 k9)
,

If we make the (admittedly dubious) assumption that (A12)
the conditional distribution of D given X is normal, then

where Pr(x(i,a)
l |P, z(i,a)l 5 k) 5 pklx(i,a)l

.it follows from (A1) that
Step 3 may be performed by simulating a proposal

22 log(Pr(X|K)) ≈ m̂ 1 ŝ2/4. (A5)
a9, from a normal distribution with mean a, and some
variance s2

a. The proposal is automatically rejected if(Replacing the assumption of normality with the as-
sumption of being gamma-distributed may be more as- a9 # 0, and otherwise it is accepted with the appropriate

Metropolis-Hastings probability.ymptotically justifiable and gives similar results.) We
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the POPRES project (23) and diverse Native American pop-
ulations genotyped by Mao et al. (26). The local admixture tracks
for each individual are in large agreement with the genome-wide
average ancestry proportions (Fig. 3, Middle).
To investigate the genetic relationships among admixed His-

panic/Latino populations and putative ancestral groups, we

compared patterns of population divergence among the inferred
segments of European, African, and Native American ancestry
and corresponding putative source populations using Wright’s
FST measure. Specifically, we used LAMP to reconstruct for each
individual in our data set, segments of European, African, and
Native American ancestry across both the maximal SNP data set

Fig. 2. Principal component analysis results of
the Hispanic/Latino individuals with Europeans,
Africans, and Native Americans. PC 1 vs. PC 2
scatter plots based on autosomal markers (Upper
Left) and based on X chromosome markers
(Upper Right). Ellipses are fitted to the PCA
results on the autosomes (Lower Left) and to
results from the X chromosome markers (Lower
Right).
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Fig. 1. Frappe clustering illustrating the admixed ancestry of Hispanic/Latinos shown for K = 3 and K = 7. Individuals are shown as vertical bars colored in
proportion to their estimated ancestry within each cluster. Native American populations are listed in order geographically, from North to South.
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Fig. 1. Neighbor-joining tree from pairwise D2

genetic distances between populations (65). African
population branches are color-coded according to
language family classification. Population clusters
by major geographic region are noted; bootstrap
values above 700 out of 1000 are indicated by
thicker lines and bootstrap number.
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Phylogenetic trees constructed from genetic
distances between populations generally showed
clustering bymajor geographic region, both on a
global scale and within Africa (Fig. 1 and figs.
S7 and S8). Within Africa, the two SAK
populations cluster together and are the most
distant from other populations, consistent with
mitochondrial DNA (mtDNA), Y chromosome,
and autosomal chromosome diversity studies, in-
dicating that SAK populations have the most
diverged genetic lineages (12, 17–21). The Pygmy
populations cluster near the SAK populations in
the tree constructed fromD2 genetic distances (Fig.
1), whereas the Hadza and Sandawe cluster near
the SAK populations in the tree constructed from
RST genetic distances (fig. S8) (4). Note that popu-
lation clustering in the tree may reflect common
ancestry and/or admixture. African populations
with high levels of non-African admixture [e.g., the
Cape Mixed Ancestry (CMA) population, com-
monly referred to as “Cape Coloured” in South
Africa] cluster in positions that are intermediate
between Africans and non-Africans, whereas the
AfricanAmerican populations,which are relatively
less admixed with non-Africans, cluster more
closely with West Africans. Additionally, popula-
tions with high levels of genetic drift (i.e., the
Americas, Oceania, and Pygmy, Hadza, and SAK
hunter-gatherers) have longer branch lengths.

Geographic distances (great circle routes)
and genetic distances (dm)2 between population
pairs were significantly correlated, consistent
with an isolation-by-distance model (figs. S9 to
S11 and table S4) (13). A heterogeneous pattern
of correlations across global regions was ob-
served, consistent with a previous study (16);
the strongest correlations were in Europe and
the Middle East (Spearman’s r = 0.88 and 0.83,
respectively; P ≤ 0.0001 for both), followed by
Africa (Spearman’s r = 0.40; P < 0.0001).
Correlations were not significant for central Asia
or India. Within Africa, the strongest correlations
between genetic and geographic distances were
in Saharan Africa and central Africa (Spearman’s
r = 0.76 and 0.55, respectively; P < 0.0001 for

both) (fig. S11 and table S4). The smallest cor-
relation was observed in eastern Africa (r = 0.19;
P < 0.0001).

Genetic structure on a global level. Global
patterns of genetic structure and individual ances-
try were inferred by principal components analy-
sis (PCA) (22) (Fig. 2A) and a Bayesian model-
based clustering approach with STRUCTURE
(23) (Figs. 3 and 4 and figs. S12 to S14).
Worldwide, 72 significant principal components
(PCs) were identified by PCA (P < 0.05) (22).
PC1 (accounting for 19.5% of the extracted vari-
ation) distinguishes Africans from non-Africans.
The CMA and African American individuals
cluster between Africans and non-Africans,
reflecting both African and non-African ancestry.
PC2 (5.01%) distinguishes Oceanians, East
Asians, and Native Americans from others. PC3
(3.5%) distinguishes the Hadza hunter-gatherers
from others. The remaining PCs each extract less
than 3% of the variation, and the 22nd to 72nd
PCs extract less than 1% combined, with some
minor PCs corresponding to regional and/or
ethnically defined populations, consistent with
STRUCTURE results below.

STRUCTURE analysis revealed 14 ancestral
population clusters (K = 14) on a global level
(Figs. 3 and 4) (4). Middle Eastern and Oceanic
populations exhibit low levels of East African
ancestry up to K = 8, consistent with possible
gene flow into these regions and with studies
suggesting early migration of modern humans
into southern Asia and Oceania (16, 24). The
Hadza, and to a lesser extent the Pygmy, SAK,
and Sandawe hunter-gatherers, are distinguished
at K = 5. The 11th cluster (K = 11) distinguishes
Mbuti Pygmy and SAK individuals, indicating
common ancestry of these geographically distant
hunter-gatherers. A number of Africans (predom-
inantly CMA, Fulani, and eastern Afroasiatic
speakers) exhibit low to moderate levels of
European–Middle Eastern ancestry, consistent with
possible gene flow from those regions. We found
more African substructure on a global level (nine
clusters) than previously observed (9–12, 20). A

phylogenetic tree of genetic distances from inferred
ancestral clusters (fig. S14) indicates that within
Africa, the Pygmy and SAK associated ancestral
clusters (AACs) form a clade, as do the Hadza and
Sandawe AACs and the Nilo-Saharan and Chadic
AACs, reflecting their ancient common ancestries.

Genetic structure within Africa. PCA of
genetic variation within Africa indicated the
presence of 43 significant PCs (P < 0.05 with a
Tracy-Widom distribution). PC1 (10.8% of the
extracted variation) distinguishes eastern and
Saharan Africa from western, central, and south-
ern Africa (Fig. 2B). The second PC (6.1%)
distinguishes the Hadza; the third PC (4.9%)
distinguishes Pygmy and SAK individuals from
other Africans. The fourth PC (3.7%) is associ-
ated with the Mozabites, some Dogon, and the
CMA individuals, who show ancestry from the
European–Middle Eastern cluster. The fifth PC
(3.1%) is associated with SAK speakers. The
10th PC was of particular interest (2.2%) be-
cause it associates with the SAK, Sandawe, and
some Dogon individuals, suggesting shared
ancestry.

We incorporated geographic data into a Bayes-
ian clustering analysis, assuming no admixture
(TESS software) (25) and distinguished six clus-
ters within continental Africa (Fig. 5A). The most
geographically widespread cluster (orange)
extends from far Western Africa (the Mandinka)
through central Africa to the Bantu speakers of
South Africa (the Venda and Xhosa) and corre-
sponds to the distribution of the Niger-Kordofanian
language family, possibly reflecting the spread of
Bantu-speaking populations from near the Nigeri-
an/Cameroonhighlands across eastern and southern
Africa within the past 5000 to 3000 years (26, 27).
Another inferred cluster includes the Pygmy and
SAK populations (green), with a noncontiguous
geographic distribution in central and southeastern
Africa, consistent with the STRUCTURE (Fig. 3)
and phylogenetic analyses (Fig. 1). Another geo-
graphically contiguous cluster extends across north-
ern Africa (blue) into Mali (the Dogon), Ethiopia,
and northern Kenya. With the exception of the

Fig. 2. Principal com-
ponents analysis (22)
created on the basis of
individual genotypes.
(A) Global data set and
(B) African data set.
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Dogon, these populations speak an Afroasiatic
language. Chadic-speaking and Nilo-Saharan–
speaking populations from Nigeria, Cameroon,

and central Chad, as well as several Nilo-
Saharan–speaking populations from southern Su-
dan, constitute another cluster (red). Nilo-Saharan

and Cushitic speakers from the Sudan, Kenya, and
Tanzania, as well as some of the Bantu speakers
from Kenya, Tanzania, and Rwanda (Hutu/Tutsi),

Fig. 3. STRUCTURE analysis of the global data set with 1327 markers
genotyped in 3945 individuals. Each vertical line represents an indi-
vidual. Individuals were grouped by self-identified ethnic group (at bot-
tom) and ethnic groups are clustered by major geographic region (at

top). Colors represent the inferred ancestry from K ancestral populations.
STRUCTURE results for K = 2 to 14 (left) are shown with the number of
similar runs (F) for the primary mode of 25 STRUCTURE runs at each K
value (right).
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Inferential Structure Determination
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• Major challenge in the determination of three-
dimensional macromolecular structures: 

• Experimental data are indirect. 
• We observe physical effects that depend on the atomic 

geometry and use a forward model to relate the 
observed data to the atomic coordinates. 

• Challenges:   
• inherently degenerate 
• data often incomplete 
• data/model rife with uncertainties 
• ill-posed problem: no single  

structure!! 
• Bayesian model can help overcome these!

Rieping, W., Habeck, M., & Nilges, M. (2005). Science 309(5732), 303–306
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• Rather than try to obtain a single best protein structure, 
Bayesian statistics can be used to obtain an ensemble. 

• In this “sausage plot”, the thickness of the sausage is 
proportional to the atom-wise error bars from the model.

beyond these techniques. Once the working
hypotheses are made, Eq. 2 provides definite
rules to determine any nuisance parameter, in-
cluding its uncertainty, directly from the data
(Fig. 3). Therefore heuristics and other sub-
jective elements are superfluous.

Because conventional structure ensembles
depend on user-specific parameter settings and
on the minimization protocol, it is difficult if
not impossible to assign statistically meaning-
ful error bars to atomic coordinates. In con-
trast, stochastic samples drawn from the joint
posterior density p(X, g, skD,I ) are statisti-
cally well defined and can directly be used to
calculate estimates of mean values and stan-
dard deviations (14). As a special case, we
can derive an average structure with atom-

wise error bars and are thus able to define an
objective figure of merit for NMR structures
(Fig. 4).

Bayesian and maximum likelihood ap-
proaches have already proven useful for data
analysis and partial aspects of structure refine-
ment in NMR spectroscopy and x-ray crystal-
lography (15, 16, 13, 17). Our results suggest
that structure determination can be solved en-
tirely in a probabilistic framework.

It is straightforward to apply our approach
to other NMR parameters. In case of three-
bond scalar coupling constants, for example,
an appropriate forward model is the Karplus
curve (18) involving three coefficients that are
treated as nuisance parameters. However, our
method is not restricted to NMR data and can

be applied to other structure determination
problems. Besides theoretical coherence, a rig-
orous probabilistic approach has decisive prac-
tical advantages. It has no free parameter and is
stable for many more than the two nuisance
parameters used in the example (19). Hence,
tedious and time-consuming searches for op-
timal values are no longer necessary. Once
the forward model to describe the data has
been chosen, probability calculus uniquely
determines the posterior distribution for all
unknowns. It is then only a computational
issue to generate posterior samples. Further
intervention is not required, and structure de-
termination attains objectivity.
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Fig. 4. Conformational un-
certainty. MOLMOL ‘‘sau-
sage’’ plot of the mean
structure with atom-wise
error bars indicated by the
thickness of the sausage.
The 20 most probable con-
formations (also shown in
Fig. 2A) from the simula-
tion of the joint posterior
distribution p(X,g,skD,I)
were used to calculate the
average structure and its
precision. The local preci-
sion ranges from 0.6 Å for
secondary structure ele-
ments to 4.6 Å for loop
regions (bottom and right-
hand side) and termini
(top). The average preci-
sion is 1.07 Å. The average
precision of the structure
ensembles calculated with
CNS is 4.93 Å for the flat-
bottom harmonic-wall po-
tential and 5.04 Å for the
harmonic potential.
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Fig. 3. Estimation of nuisance parameters. Posterior histograms compiled from MCMC samples for the
scaling factor g in the ISPA and for the width s of the log normal error distribution. (A) Posterior
histogram p(gj1/6kD,I) for the inverse sixth power of g. This factor corrects interproton distances to
match the experimental distances best. (B) Posterior histogram p(skD,I) for the error s. In conventional
approaches, this analog to the weight (wdata º sj2) can only be estimated via cross-validation or
must be set empirically.
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• Goal: 
• Get a score (Pi) for every possible conformation (Xi) 
• Rank scores, and keep the best ones

beyond these techniques. Once the working
hypotheses are made, Eq. 2 provides definite
rules to determine any nuisance parameter, in-
cluding its uncertainty, directly from the data
(Fig. 3). Therefore heuristics and other sub-
jective elements are superfluous.

Because conventional structure ensembles
depend on user-specific parameter settings and
on the minimization protocol, it is difficult if
not impossible to assign statistically meaning-
ful error bars to atomic coordinates. In con-
trast, stochastic samples drawn from the joint
posterior density p(X, g, skD,I ) are statisti-
cally well defined and can directly be used to
calculate estimates of mean values and stan-
dard deviations (14). As a special case, we
can derive an average structure with atom-

wise error bars and are thus able to define an
objective figure of merit for NMR structures
(Fig. 4).

Bayesian and maximum likelihood ap-
proaches have already proven useful for data
analysis and partial aspects of structure refine-
ment in NMR spectroscopy and x-ray crystal-
lography (15, 16, 13, 17). Our results suggest
that structure determination can be solved en-
tirely in a probabilistic framework.

It is straightforward to apply our approach
to other NMR parameters. In case of three-
bond scalar coupling constants, for example,
an appropriate forward model is the Karplus
curve (18) involving three coefficients that are
treated as nuisance parameters. However, our
method is not restricted to NMR data and can

be applied to other structure determination
problems. Besides theoretical coherence, a rig-
orous probabilistic approach has decisive prac-
tical advantages. It has no free parameter and is
stable for many more than the two nuisance
parameters used in the example (19). Hence,
tedious and time-consuming searches for op-
timal values are no longer necessary. Once
the forward model to describe the data has
been chosen, probability calculus uniquely
determines the posterior distribution for all
unknowns. It is then only a computational
issue to generate posterior samples. Further
intervention is not required, and structure de-
termination attains objectivity.
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Fig. 4. Conformational un-
certainty. MOLMOL ‘‘sau-
sage’’ plot of the mean
structure with atom-wise
error bars indicated by the
thickness of the sausage.
The 20 most probable con-
formations (also shown in
Fig. 2A) from the simula-
tion of the joint posterior
distribution p(X,g,skD,I)
were used to calculate the
average structure and its
precision. The local preci-
sion ranges from 0.6 Å for
secondary structure ele-
ments to 4.6 Å for loop
regions (bottom and right-
hand side) and termini
(top). The average preci-
sion is 1.07 Å. The average
precision of the structure
ensembles calculated with
CNS is 4.93 Å for the flat-
bottom harmonic-wall po-
tential and 5.04 Å for the
harmonic potential.
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Fig. 3. Estimation of nuisance parameters. Posterior histograms compiled from MCMC samples for the
scaling factor g in the ISPA and for the width s of the log normal error distribution. (A) Posterior
histogram p(gj1/6kD,I) for the inverse sixth power of g. This factor corrects interproton distances to
match the experimental distances best. (B) Posterior histogram p(skD,I) for the error s. In conventional
approaches, this analog to the weight (wdata º sj2) can only be estimated via cross-validation or
must be set empirically.
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developed a Markov chain Monte Carlo
(MCMC) algorithm based on the replica-
exchange method (8) to simulate the joint pos-
terior density of a structure determination
problem (5, 9) (Fig. 1 and fig. S1).

The most pronounced features of the poste-
rior density can be represented in a set of con-
formational samples. Although this looks at first
glance like a conventional structure ensemble,
the rationale behind our approach to obtain
conformational samples is very different. The
uncertainty of atomic positions is directly influ-
enced by the uncertainty of nuisance parameters
and by the quality of the data. Effects not de-
scribed in the ISPA, such as protein dynamics,
tend to increase the deviations between pre-
dicted and measured peak intensities. This is
reflected in an increase of the error s and con-
sequently leads to a loss in structural precision.
However, unless the forward model incorporates
experimental information on protein dynamics,
we cannot discriminate motion from impreci-
sions due to experimental errors or lack of data.

Compared with conventional structure en-
sembles, our conformational samples are much
better defined and systematically closer to the
structure obtained with x-ray crystallography
(10) (Fig. 2). A comparison of the 20 most
probable conformations with the x-ray struc-
ture yields a backbone heavy atom rmsd (root
mean square deviation) of 1.84 T 0.20 ) for all
residues and 1.36 T 0.19 ) for the secondary
structural elements. This is a considerable im-
provement over conventional techniques used
in (6), where an ensemble with an overall
rmsd of 2.86 T 0.33) and an rmsd of 2.01 T
0.28 ) for secondary structure elements was
obtained. This improvement originates in the
calculation of structures by random sam-
pling, which searches conformational space
more exhaustively and suppresses topological-
ly unlikely conformations. Misfolds such as
mirror images can only be realized in a small
number of ways; thus, they are entropically
suppressed and do not show up in a statistical
ensemble. Discriminating such conformations

on the basis of the hybrid energy is more dif-
ficult, in particular if the data are sparse.

A probabilistic structure ensemble is exclu-
sively determined by the data and the working
hypotheses that enter the analysis (which are
in the presented example the ISPA, the log-
normal error distribution, and our choice of
the force field). Modifications will, of course,
lead to changes in the structures. The atom
positions, for example, are sensitive to the pa-
rameters and the functional form of the force
field used in the conformational prior density.
This also holds for conventional approaches,
which are based on analogous assumptions.
However, in addition, conventional methods
require empirical rules to treat nuisance pa-
rameters, because they cannot be determined
from the hybrid energy alone. Cross-validation
(11, 12) and maximum likelihood methods (13),
for example, have successfully been applied
in NMR and crystallographic refinement to
determine certain nuisance parameters such
as the weight wdata. The ISD approach goes

Fig. 2. Structure ensembles. Calculated structures (gray)
were superimposed onto the x-ray structure of the SH3
domain (black). Superposition and plotting of the structures
was carried out with MOLMOL (24). (A) Backbone traces
(atoms N, Ca, and C) of the 20 most likely conformations
obtained with our sampling algorithm. For comparison, two
conventional structure ensembles were calculated by
repeatedly running a standard simulated annealing protocol
(22) with fixed weight wdata. We used the program CNS
(23) to calculate 200 conformers for two different
restraining potentials; the panels show the 20 lowest
energy conformations. (B) In the first calculation, distance
bounds and a flat-bottom harmonic-wall potential with
linear asymptotes (25) were used, resulting in an ensemble
with a backbone heavy atom rmsd to the x-ray structure
(10) of 3.07 T 0.53 Å for all residues and 1.93 T 0.34 Å for
secondary structure elements. (C) In the second calculation,
we used a harmonic restraining potential on the distances
Ii
j1/6, leading to an overall rmsd of 2.98 T 0.46 Å and 2.15 T
0.41 Å for secondary structure elements.
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• Goal: 
• Get a score (Pi) for every possible conformation (Xi) 
• Rank scores, and keep the best ones 

• In this case: 
• Pi = P(Xi | D, I):  Probability of a conformation given the 

data (D) and prior information (I). 
• As usual, apply Bayes’ Rule! 

•  
  

• The likelihood P(D|X,I) combines a forward model that relates 
observed data to atomic coordinates and an error distribution. 

• The prior distribution P(X|I) uses prior information about 
bimolecular structures, determined by physical energy and 
temperature of the system.

P (X|D, I) / P (D|X, I)P (X|I)
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• The full model evaluated incorporates nuisance 
parameters (ξ={γ,σ}). 

• Inference is then performed using MCMC. 
wdataEdata (2), where a nonphysical energy
Edata uses the forward model and a restraining
function to assess the agreement between data
and structure. A force field Ephys describes the
physical properties of the macromolecule,
such as bonded and nonbonded interactions
between the atoms, and partially removes the
degeneracy of the problem. The rationale is
that minimization of the hybrid energy ef-
fectively inverts the forward model, yielding
the Btrue[ structure.

This strategy works in the case of many
data of good quality. In less favorable situ-
ations, the ill-posed nature of the inverse prob-
lem becomes apparent. Specifically, it remains
unclear how to choose auxiliary parameters
like the weight wdata or theory parameters such
as the scaling factor g in the ISPA. Because the
hybrid energy minimization paradigm offers
no principle to settle these issues, such param-
eters need to be determined heuristically.

The principal difficulty in structure deter-
mination by NMR is the lack of information
that is indispensible to reconstruct the struc-
ture unambiguously. By formulating an opti-
mization problem (Bsearch for the minimum
of Ehybrid[), one however implicitly assumes
that there is a unique answer. Repeating the
optimization procedure multiple times to ob-
tain several Bunique[ solutions hides but does
not solve the ambiguity and makes it difficult
to judge the validity and precision of NMR
structures in an objective way.

We suggest that it is a misconception to
use structure calculation methods that are
only appropriate if the objective is to obtain
a unique structure. Instead, we view structure
determination as an inference problem, requir-
ing reasoning from incomplete and uncertain
information. We consider the entire confor-
mational space and use the data only to rank
the molecule_s possible conformations. We
assign a number Pi to every conformation Xi.
If Pi 9 Pj, conformation Xi is more supported
by the data than Xj. Cox (3) proved that such
rankings are equivalent to a probability and
that probability theory is the only consistent
calculus to solve inference problems. The dis-
tribution of the probabilities Pi reflects the
information content of the data. If all but one
Pi vanish, the data determine the structure
uniquely. If Pi are uniform throughout con-
formational space, the data are completely
uninformative with respect to the structure.

Any inferential structure determination
(ISD) is solved by calculating the probabilities
Pi. We demand the probabilities to be objec-
tive in the sense that they only depend on data
D and on relevant prior information I (such as
the forward model or knowledge about phys-
ical interactions). Thus, Pi is a conditional
probability, Pi 0 P(XikD,I); it is not a fre-
quency of occurence but a quantitative repre-
sentation of our state of knowledge. In the
case of a continuous parametrization of con-

formations, such as Cartesian coordinates, Pi

is a density p(X kD,I).
A direct consequence of probability calcu-

lus is Bayes_ theorem (4), which formally
solves our inference problem. The posterior
density

pðX kD; IÞ º pðDkX; IÞ pðX kIÞ ð1Þ

factorizes into two natural components: The
likelihood function p(DkX, I) combines a
forward model and an error distribution and
quantifies the likelihood of observing data D
given a molecular structure X. Because we
model deviations between measurements and
predictions explicitly, the precision of the co-
ordinates depends on the quality of the data
and on the accuracy of the forward model. In
the ideal case of a uniquely invertible model,
the likelihood function is only peaked at the
structure that satisfies the data (i.e., the con-
ventional approach is contained as limiting
case). The prior density p(X kI) takes prior
knowledge about biomolecular structures into
account and is determined by the physical en-
ergy and the temperature of the system (5).

The error distribution and the forward
model typically contain auxiliary parameters
x that are unavailable from the data but nec-
essary in order to describe the problem ade-
quately. In Bayesian theory, such nuisance
parameters are treated in the same way as the
coordinates: They are estimated from the ex-
perimental data by replacing X with (X, x) in
Eq. 1. Assuming independence of X and x, the

joint posterior density for all unknown param-
eters is

pðX ;xkD; IÞ º pðDkX ;x; IÞ pðX kIÞ pðxkIÞ
ð2Þ

Equation 2 provides a unique rule to deter-
mine any quantity that is not accessible by
experiment.

To demonstrate the practical feasibility of
the ISD approach, we infer the molecular
structure of the Fyn SH3 domain (59 amino
acids length). Experimental distances between
amide protons were derived from a series of
NOESY spectra on a A15N, 2HZ enriched
protein (6). The data set is sparse: It comprises
154 measurements, of which on average only
one per amino acid provides long-range struc-
tural information. The forward model Ii 0
gdi

j6(X ) defined by the ISPA does not account
for experimental errors and systematic effects
like spin diffusion (1) and internal dynamics
(7); hence, observed intensities will deviate
from theoretical predictions. A log normal dis-
tribution (5) describes these deviations and in-
troduces a second nuisance parameter s that
quantifies their magnitude. Thus, we have two
nuisance parameters, x 0 (g,s).

Although given in analytically closed form
(5), it is practically impossible to evaluate the
posterior density p(X,g,skD,I ) over all confor-
mational space. Therefore, in our view, struc-
ture calculation comprises posterior simulation,
which samples only regions that carry a con-
siderable amount of probability mass. We have

Fig. 1. Replica-exchange
Monte Carlo algorithm.
(A) We generate a
stochastic sample (X(k),
g(k), s(k)) from the joint
posterior distribution in
an iterative fashion by
using Gibbs sampling
(20). The nuisance pa-
rameters g and s are
consecutively drawn
from their conditional
posterior distributions,
with the values of the
other parameters being
fixed to their previously
generated values. Coor-
dinates are updated by
using the hybrid Monte
Carlo method (21). (B)
To overcome energy
barriers, we embed this
scheme in a replica-
exchange strategy,
which simulates a se-
quence of heated copies
of the system. Samples
of the target distribu-
tion are generated in
the low-temperature copy (Tlow) and propagate via stochastic exchanges between intermediate
copies (Tlow G Ti G Thigh) to the high-temperature system (Thigh). The temperature Thigh is chosen
such that the polypeptide chain can move freely in order to escape local modes of the probability
density.
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P (X, ⇠|D, I) / P (D|X, ⇠, I)P (X|I)p(⇠|I)

Calculate 
likelihood:  
P(D|X,ξ,I)

developed a Markov chain Monte Carlo
(MCMC) algorithm based on the replica-
exchange method (8) to simulate the joint pos-
terior density of a structure determination
problem (5, 9) (Fig. 1 and fig. S1).

The most pronounced features of the poste-
rior density can be represented in a set of con-
formational samples. Although this looks at first
glance like a conventional structure ensemble,
the rationale behind our approach to obtain
conformational samples is very different. The
uncertainty of atomic positions is directly influ-
enced by the uncertainty of nuisance parameters
and by the quality of the data. Effects not de-
scribed in the ISPA, such as protein dynamics,
tend to increase the deviations between pre-
dicted and measured peak intensities. This is
reflected in an increase of the error s and con-
sequently leads to a loss in structural precision.
However, unless the forward model incorporates
experimental information on protein dynamics,
we cannot discriminate motion from impreci-
sions due to experimental errors or lack of data.

Compared with conventional structure en-
sembles, our conformational samples are much
better defined and systematically closer to the
structure obtained with x-ray crystallography
(10) (Fig. 2). A comparison of the 20 most
probable conformations with the x-ray struc-
ture yields a backbone heavy atom rmsd (root
mean square deviation) of 1.84 T 0.20 ) for all
residues and 1.36 T 0.19 ) for the secondary
structural elements. This is a considerable im-
provement over conventional techniques used
in (6), where an ensemble with an overall
rmsd of 2.86 T 0.33) and an rmsd of 2.01 T
0.28 ) for secondary structure elements was
obtained. This improvement originates in the
calculation of structures by random sam-
pling, which searches conformational space
more exhaustively and suppresses topological-
ly unlikely conformations. Misfolds such as
mirror images can only be realized in a small
number of ways; thus, they are entropically
suppressed and do not show up in a statistical
ensemble. Discriminating such conformations

on the basis of the hybrid energy is more dif-
ficult, in particular if the data are sparse.

A probabilistic structure ensemble is exclu-
sively determined by the data and the working
hypotheses that enter the analysis (which are
in the presented example the ISPA, the log-
normal error distribution, and our choice of
the force field). Modifications will, of course,
lead to changes in the structures. The atom
positions, for example, are sensitive to the pa-
rameters and the functional form of the force
field used in the conformational prior density.
This also holds for conventional approaches,
which are based on analogous assumptions.
However, in addition, conventional methods
require empirical rules to treat nuisance pa-
rameters, because they cannot be determined
from the hybrid energy alone. Cross-validation
(11, 12) and maximum likelihood methods (13),
for example, have successfully been applied
in NMR and crystallographic refinement to
determine certain nuisance parameters such
as the weight wdata. The ISD approach goes

Fig. 2. Structure ensembles. Calculated structures (gray)
were superimposed onto the x-ray structure of the SH3
domain (black). Superposition and plotting of the structures
was carried out with MOLMOL (24). (A) Backbone traces
(atoms N, Ca, and C) of the 20 most likely conformations
obtained with our sampling algorithm. For comparison, two
conventional structure ensembles were calculated by
repeatedly running a standard simulated annealing protocol
(22) with fixed weight wdata. We used the program CNS
(23) to calculate 200 conformers for two different
restraining potentials; the panels show the 20 lowest
energy conformations. (B) In the first calculation, distance
bounds and a flat-bottom harmonic-wall potential with
linear asymptotes (25) were used, resulting in an ensemble
with a backbone heavy atom rmsd to the x-ray structure
(10) of 3.07 T 0.53 Å for all residues and 1.93 T 0.34 Å for
secondary structure elements. (C) In the second calculation,
we used a harmonic restraining potential on the distances
Ii
j1/6, leading to an overall rmsd of 2.98 T 0.46 Å and 2.15 T
0.41 Å for secondary structure elements.
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