
BMI 206  
 
 

Structure Prediction Lab 
11/18/16 

 
 Benjamin Webb, Sali Lab  

(ben@salilab.org)

mailto:ben@salilab.org


Why Protein Structure Prediction?

We have an experimentally determined atomic structure for less 
than 1% of the known protein sequences (and this gets worse 
every year). 
For assemblies of multiple proteins, even less is known.

Y 2016

Sequences 70,650,000

Structures 128,000



Structural biology: 
Maximize accuracy, resolution, completeness, and efficiency of the 

structural coverage of macromolecular assemblies 

Motivation: Models will allow us to understand how machines work, how they evolved, how 
they can be controlled, modified, and perhaps even designed.

There may be thousands 
of biologically relevant 
macromolecular 
complexes whose 
structures are yet to be 
characterized, involved 
in a few hundred core 
biological processes.

GroEL chaperonin

flagellar motorHIV virus

nuclear pore complexATP synthase ribosome

tRNA synthetaseRNA polymerase II



02/15/2007

Sali A, Earnest T, Glaeser R, Baumeister W. From words to literature in structural proteomics. Nature 422, 216-225, 2003. 
Ward A, Sali A, Wilson I. Integrative structural biology. Science 339, 913-915, 2013.

PHYSICS

STATISTICSEXPERIMENT

∫

Integrative Structural Biology 
for maximizing accuracy, resolution, completeness, and efficiency of structure determination

Use structural information from any 
source: measurement, first principles, rules; 
resolution: low or high resolution 

to obtain the set of all models that are consistent with it.

INTUITION



Comparative modeling by satisfaction of spatial 
restraints: MODELLER

3D  GKITFYERGFQGHCYESDC-NLQP…

SEQ GKITFYERG---RCYESDCPNLQP…

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993. 
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994. 
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

 https://salilab.org/modeller/

http://salilab.org


Comparative modeling by satisfaction of spatial 
restraints: MODELLER

3D  GKITFYERGFQGHCYESDC-NLQP…

SEQ GKITFYERG---RCYESDCPNLQP…

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993. 
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994. 
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

 https://salilab.org/modeller/

15 17 19 21 23 2525

Cα-Cα distance [Å]

1. Extract spatial restraints

0

100

200

300

400

Fr
eq

ue
nc

y

http://salilab.org


Comparative modeling by satisfaction of spatial 
restraints: MODELLER

3D  GKITFYERGFQGHCYESDC-NLQP…

SEQ GKITFYERG---RCYESDCPNLQP…

F(R) = Π pi (fi /I)
i

2. Satisfy spatial restraints

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993. 
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994. 
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

 https://salilab.org/modeller/

15 17 19 21 23 2525

Cα-Cα distance [Å]

1. Extract spatial restraints

0

100

200

300

400

Fr
eq

ue
nc

y

http://salilab.org


Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

 A description of integrative structure determination
Alber et al. Nature 450, 683-694, 2007 

Robinson et al. Nature 450, 974-982, 2007
Alber et al. Annual Reviews in Biochemistry 77, 11.1–11.35, 2008

Russel et al. PLoS Biology 10, 2012
Ward et al. Science 339, 913-915, 2013

Schneidman et al. Curr.Opin.Str.Biol., 2014.

While it may be hard to live with generalization, it is inconceivable to live without it. Peter Gay, Schnitzler’s Century (2002).



Integrative Modeling Platform (IMP) 
https://integrativemodeling.org

D. Russel, K. Lasker, B. Webb, J. Velazquez-Muriel, E. Tjioe, D. Schneidman, F. Alber, B. Peterson, A. Sali, PLoS Biol, 2012. 
R. Pellarin, M. Bonomi, B. Raveh, S. Calhoun, C. Greenberg, G.Dong.

Diverse problems, so no one 
‘black box’ 
“Mix and match” components 
for developing an integrative 
modeling protocol 
Open source (LGPL) 
Hosted on

Representation: 
Atomic 
Rigid bodies 
Coarse-grained 
Multi-scale 
Symmetry / periodicity 
Multi-state systems

Scoring:  
Density maps 
EM images 
Proteomics 
FRET 
Chemical and Cys cross-linking 
Homology-derived restraints 
SAXS 
Native mass spectrometry 
Statistical potentials 
Molecular mechanics forcefields 
Bayesian scoring 
Library of functional forms 
(ambiguity, ...)

Analysis:  
Clustering 
Chimera 
PyMOL 
PDB files 
Density maps 

Sampling: 
Simplex 
Conjugate Gradients 
Monte Carlo 
Brownian Dynamics 
Molecular Dynamics 
Replica Exchange 
Divide-and-conquer  
   enumeration 

http://integrative




IMP kernel



IMP kernelIMP.algebra



IMP kernelIMP.algebra

IMP.saxs



IMP kernelIMP.algebra

IMP.em

IMP.saxs



IMP kernelIMP.algebra

IMP.em

IMP.saxs

Split into modules 
Distinct functionality 
Developed separately 
Licensed differently 
Stable interfaces



IMP kernelIMP.algebra

IMP.em

IMP.saxs

Split into modules 
Distinct functionality 
Developed separately 
Licensed differently 
Stable interfaces

Common functionality



IMP kernelIMP.algebra

IMP.em

IMP.saxs

Split into modules 
Distinct functionality 
Developed separately 
Licensed differently 
Stable interfaces

Common functionalityGeometry, primitive shapes



IMP kernelIMP.algebra

IMP.em

IMP.saxs

Split into modules 
Distinct functionality 
Developed separately 
Licensed differently 
Stable interfaces

Common functionalityGeometry, primitive shapes

Handling of Small
Angle X-ray
(SAXS) data



IMP kernelIMP.algebra

IMP.em

IMP.saxs

Split into modules 
Distinct functionality 
Developed separately 
Licensed differently 
Stable interfaces

Common functionalityGeometry, primitive shapes

Handling of electron
microscopy (EM)
experimental data

Handling of Small
Angle X-ray
(SAXS) data



IMP kernelIMP.algebra

IMP.em

IMP.saxs

Split into modules 
Distinct functionality 
Developed separately 
Licensed differently 
Stable interfaces

Common functionalityGeometry, primitive shapes

Handling of electron
microscopy (EM)
experimental data

Handling of Small
Angle X-ray
(SAXS) data Model

Distance

Angle

Plane

Cross correlation

Gaussian Mixture Model

Profile



SAXS

Sample is in solution 
Pro: closer to its in vivo state 
Con: rotationally averaged



EM

Significant processing required to generate a 3D image



Link via Python to other 
packages (via standard 
interfaces) to avoid 
code duplication…



Link via Python to other 
packages (via standard 
interfaces) to avoid 
code duplication…

MODELLER 

comparative modeling



Link via Python to other 
packages (via standard 
interfaces) to avoid 
code duplication…

BioPython 

handling of 

sequence data

MODELLER 

comparative modeling



Link via Python to other 
packages (via standard 
interfaces) to avoid 
code duplication…

Chimera/VMD 

visualization

BioPython 

handling of 

sequence data

MODELLER 

comparative modeling



Link via Python to other 
packages (via standard 
interfaces) to avoid 
code duplication…

scikit-learn 

clustering, machine 

learning

Chimera/VMD 

visualization

BioPython 

handling of 

sequence data

MODELLER 

comparative modeling



Link via Python to other 
packages (via standard 
interfaces) to avoid 
code duplication…

scikit-learn 

clustering, machine 

learning

Chimera/VMD 

visualization

BioPython 

handling of 

sequence data

MODELLER 

comparative modeling

numpy/scipy 

      matrix/linear algebra



Link via Python to other 
packages (via standard 
interfaces) to avoid 
code duplication…

scikit-learn 

clustering, machine 

learning
etc.

Chimera/VMD 

visualization

BioPython 

handling of 

sequence data

MODELLER 

comparative modeling

numpy/scipy 

      matrix/linear algebra



Each ‘piece’ is a Python class 
Most classes actually ‘wrap’ an underlying class 
in C++ 

C++ for speed, Python for flexibility 
Each module is a Python module, and C++ 
namespace 
IMP is usually used from Python, by writing a 
script 
A protocol is one or more Python scripts plus 
the input data

Integrative Modeling Platform (IMP) 
https://integrativemodeling.org

http://integrative


Example Python script
import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()
# Create two "untyped" Particles
p1 = IMP.Particle(m)
p2 = IMP.Particle(m)

# "Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(p1)
d2 = IMP.core.XYZ.setup_particle(p2)

# Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

# Harmonically restrain p1 to be zero distance from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(s, p1)

# Harmonically restrain p1 and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(s, (p1, p2))

# Optimize the x,y,z coordinates of both particles with conjugate gradients
sf = IMP.core.RestraintsScoringFunction([r1, r2], "scoring function")
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.set_scoring_function(sf)
o.optimize(50)
print(d1, d2)



import IMP
import IMP.algebra
import IMP.core

Make IMP classes in the IMP kernel (‘IMP’) and 
IMP.algebra and IMP.core modules available



m = IMP.Model()
# Create two "untyped" Particles
p1 = IMP.Particle(m)
p2 = IMP.Particle(m)

Create a new Model object (an instance of the Model 
class) and assign it to the variable ‘m’

An IMP Model is a container that holds knowledge 
of the entire system

Create two Particles called ‘p1’ and ‘p2’
A Particle is an abstract data container and can 
hold any number of attribute:value pairs, e.g.

xyz coordinates
mass
radius
pointers to other Particles, to represent a bond 
(two other particles), or hierarchy (parents, 
children)
element, residue/atom name, etc.



# "Decorate" the Particles with x,y,z attributes (point-like 
particles)
d1 = IMP.core.XYZ.setup_particle(p1)
d2 = IMP.core.XYZ.setup_particle(p2)

# Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

A decorator lets us use a specific set of functionality on 
a Particle

‘d1’ refers to the same underlying object as ‘p1’ 
but acts like a 3D point (IMP.core.XYZ class)

set_coordinates() is a method of the XYZ class
IMP.algebra.Vector3D represents a 3D vector or 
coordinate



# Harmonically restrain p1 to be zero distance from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(s, p1)

A Restraint is a term in our scoring function
IMP.core.SingletonRestraint applies a Score to a single 
particle (p1 in this case)
In turn, DistanceToSingletonScore calculates the 
Cartesian distance between a fixed point and p1, then 
uses a unary function to weight that distance
Harmonic is a unary function that applies a simple 
harmonic spring
In this way, we can very flexibly build our scoring 
function from basic building blocks



# Harmonically restrain p1 and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(s, (p1, p2))

Similarly, we make another Restraint called ‘r2’ that 
restrains the distance between two particles
Usually distances are considered to be angstroms but 
this isn’t required or enforced



# Optimize the x,y,z coordinates of both particles with conjugate gradients
sf = IMP.core.RestraintsScoringFunction([r1, r2], "scoring function")
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.set_scoring_function(sf)
o.optimize(50)
print(d1, d2)

Finally, we make a simple scoring function ‘sf’ that’s 
just the sum of the two harmonic restraints
We find the minimum of the function using up to 50 
steps of conjugate gradients

At each step the algorithm will try to reduce the 
value of the scoring function by changing the 
coordinates of d1 and/or d2



Example Python script
import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()
# Create two "untyped" Particles
p1 = IMP.Particle(m)
p2 = IMP.Particle(m)

# "Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(p1)
d2 = IMP.core.XYZ.setup_particle(p2)

# Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

# Harmonically restrain p1 to be zero distance from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(s, p1)

# Harmonically restrain p1 and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(s, (p1, p2))

# Optimize the x,y,z coordinates of both particles with conjugate gradients
sf = IMP.core.RestraintsScoringFunction([r1, r2], "scoring function")
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.set_scoring_function(sf)
o.optimize(50)
print(d1, d2)



Example Python script
import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()
# Create two "untyped" Particles
p1 = IMP.Particle(m)
p2 = IMP.Particle(m)

# "Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(p1)
d2 = IMP.core.XYZ.setup_particle(p2)

# Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

# Harmonically restrain p1 to be zero distance from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(s, p1)

# Harmonically restrain p1 and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(s, (p1, p2))

# Optimize the x,y,z coordinates of both particles with conjugate gradients
sf = IMP.core.RestraintsScoringFunction([r1, r2], "scoring function")
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.set_scoring_function(sf)
o.optimize(50)
print(d1, d2)

So let’s run it…



Example Python script
import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()
# Create two "untyped" Particles
p1 = IMP.Particle(m)
p2 = IMP.Particle(m)

# "Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(p1)
d2 = IMP.core.XYZ.setup_particle(p2)

# Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

# Harmonically restrain p1 to be zero distance from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(s, p1)

# Harmonically restrain p1 and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(s, (p1, p2))

# Optimize the x,y,z coordinates of both particles with conjugate gradients
sf = IMP.core.RestraintsScoringFunction([r1, r2], "scoring function")
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.set_scoring_function(sf)
o.optimize(50)
print(d1, d2)

So let’s run it…
Very flexible, but all 
we’ve done here is 
move two points!



IMP C++/Python 
library

PMI

Higher level interfaces

In practice, scripts for “real” modeling problems 
would be too long and unwieldy to write this way 
Most usage of IMP is via simpler (but less 
‘expressive’) interfaces

Simplicity

Ex
pr
es
si
ve
ne
ss

Chimera tools/ 
web services

Domain-specific applications



Chimera tools/ 
web services

AllosMod: modeling of ligand-induced protein dynamics, allostery

FoXS: fast SAXS profile computation with Debye formula

FoXSDock: macromolecular docking with SAXS Profile

SAXSMerge: automated statistical method to merge SAXS profiles 
from different concentrations and exposure times

Pose&Rank: scoring of protein-ligand complexes



IMP C++/Python 
library

PMI

Simplicity

Ex
pr
es
si
ve
ne
ss

Chimera tools/ 
web services

Domain-specific applications



Command line tools
Generally, similar functionality to web services, 
but running locally

Domain-specific applications



IMP C++/Python 
library

PMI

Simplicity

Ex
pr
es
si
ve
ne
ss

Chimera tools/ 
web services

Domain-specific applications



Just another IMP module (IMP.pmi) 
A meta language for modeling 
We still write Python scripts, but… 

Many protocols (e.g. replica exchange) already packaged up 
nicely for us 
Refer to biological units rather than individual particles 
Publication-ready plots are more or less automatic 

Regular IMP objects are constructed, so an 
advanced user can always customize things using 
the full collection of IMP classes if PMI is insufficient 
Today we will use PMI to model the stalk of the RNA 
Polymerase II complex: 
https://github.com/salilab/imp_tutorial/

PMI

https://github.com/salilab/imp_tutorial/


Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Reproducibility/Deposition

Publish?



Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Reproducibility/Deposition

Pu
bl

is
h



Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Reproducibility/Deposition

Pu
bl

is
h

Store protocol in 
GitHub so others 
can run it, improve 
it, modify it 
Document! 
Automated tests 
DOI (Zenodo, 
Figshare) 

https://pdb-dev.rcsb.rutgers.edu/ 
https://integrativemodeling.org/systems/

https://pdb-dev.rcsb.rutgers.edu/
https://integrativemodeling.org/systems/


Example: Nup84

63 
 
 
 

 

Figure 4. The 4-stage scheme for integrative structure determination of the Nup84 

complex 

Suggested location – Results, Molecular architecture of the endogenous Nup84 

complex revealed by integrative modeling 

 

 

Mol Cell Proteomics 13, 2927-2943, 2014



Cross-linking coupled with mass 
spectrometry (CX-MS)

Output, essentially, is a list of proximal residue pairs (again, after 
processing)

Note: spectra can identify multiple cross-links (ambiguity)

Peptide fragmentation and identificationTrypsin digestionCross-linkingTarget complex



Installation

We need installed 
numpy and scipy for matrix and linear algebra 
scikit-learn for k-means clustering 
matplotlib for plotting results 
Chimera for visualization of results 
IMP itself 

Easiest way is to install Anaconda Python, then run: 
 
conda config --add channels salilab  
conda install imp numpy scipy scikit-learn matplotlib 

Get the tutorial files from GitHub: 
https://github.com/salilab/imp_tutorial/

https://github.com/salilab/imp_tutorial/


Integrative Structure Modeling of RNA 
Polymerase II stalk

RNA Pol II is a eukaryotic complex that catalyzes DNA 
transcription to synthesize mRNA strands. 
Eukaryotic RNA polymerase II contains 12 subunits, 
Rpb1 to Rpb12. 
The yeast RNA Pol II dissociates into a 10-subunit core 
and a Rpb4/Rpb7 heterodimer. 
Rpb4 and Rpb7 are conserved from yeast to humans, 
and form a stalk-like protrusion extending from the main 
body of the RNA Pol II complex.



We want to determine the localization of two subunits of the yeast 
RNA Polymerase II, Rpb4 and Rpb7 (stalk), hypothesizing that we 
know already the structure of the remaining 10-subunit complex. 
This example utilizes: 

chemical cross-linking coupled with mass spectrometry (CX-MS),  
negative-stain electron microscopy (EM),  
x-ray crystallography data 

Integrative Structure Modeling of RNA 
Polymerase II stalk



Get tutorial files from GitHub

Let’s get started by getting the main modeling 
script running while we look at what it’s doing: 
 
cd imp_tutorial/rnapolii/modeling  
python modeling.py --test 

“Real” modeling will take hours, so we’re 
running in ‘test’ mode which generates only 50 
frames (rather than 20,000) 

The script covers the first 3 steps of 
integrative modeling 

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation



Data for yeast RNA Polymerase II

The rnapolii/data folder contains: 
Sequence information (FASTA files for each 
subunit) 
Electron density maps (.mrc, .txt files) 
Structure from x-ray crystallography (PDB file) 
Chemical crosslinking datasets (two data sets, 
one from Al Burlingame's lab, and another from 
Juri Rappsilber's lab)

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation



FASTA file

1WCM.fasta.txt: 

>1WCM:A 

MVGQQYSSAPLRTVKEVQFGLFSPEEVRAISVAKIRFPETMDETQTRAKIGG 

LNDPRLGSIDRNLKCQTCQEGMNECPGHFGHIDLAKPVFHVGFIAKIKKVCE 

CVCMHCGKLLLDEHNELMRQALAIKDSKKRFAAIWTLCKTKMVCETDVPSED   

... 

>1WCM:B 

MSDLANSEKYYDEDPYGFEDESAPITAEDSWAVISAFFREKGLVSQQLDSFN 

QFVDYTLQDIICEDSTLILEQLAQHTTESDNISRKYEISFGKIYVTKPMVNE 

SDGVTHALYPQEARLRNLTYSSGLFVDVKKRTYEAIDVPGRELKYELIAEES 

... 

defines two chains with unique IDs of 
1WCM:A and 1WCM:B respectively 
12 chains in total, A through L

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation



Electron density map

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

emd_1883.map.mrc experimental map of entire complex at 20.9Å resolution

Gaussian mixture models (GMMs) are used to greatly speed up scoring 
by approximating the electron density of individual subunits and 
experimental EM maps as a sum of 3D Gaussians. The weight, center, 
and covariance matrix of each Gaussian used to approximate the 
original EM density can be seen in emd_1883.map.mrc.gmm.50.txt



X-ray structures

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

1WCM.pdb high resolution coordinates for all 12 chains of RNA Pol II



Chemical cross-links

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

polii_xlinks.csv and polii_juri.csv: multiple 
comma-separated columns; four of these 
specify the protein and residue number for 
each of the two linker residues:


prot1,res1,prot2,res2	
Rpb1,34,Rpb1,49	
Rpb1,101,Rpb1,143	
Rpb1,101,Rpb1,176	

The length of the DSS/BS3 cross-linker 
reagent, 21Å, will be specified later in the 
modeling script.



Model representation in IMP

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Representation is defined by all the variables that need to be determined based on input 
information (e.g. points, spheres, ellipsoids, and 3D Gaussian density functions).


We use spherical beads and 3D Gaussians. The spatial restraints will be 
applied to individual resolution scales as appropriate.


Beads and Gaussians of a given domain are arranged into either a 
rigid body or a flexible string.



Handling of missing structure

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Even though we have X-ray structures, not all residues were 
resolved (yellow regions)


Would be over-interpretation of the data to try to represent this at 
high resolution


Use low resolution beads (20 residues per bead) instead here


Treat high resolution regions as rigid bodies, allow low resolution 
regions to move (floppy bodies)



IMP topology file

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

rnapolii/data/topology.txt  The topology file stores the 
basic information needed to create a structural model in 
IMP.


|directories| 
|pdb_dir|./| 
|fasta_dir|./| 
|gmm_dir|./| 

|topology_dictionary| 
|component_name|domain_name|fasta_fn|fasta_id|pdb_fn|chain|residue_range|pdb_offset|
bead_size|em_residues_per_gaussian| 
|Rpb1 |Rpb1_1|1WCM_new.fasta.txt|1WCM:A|1WCM_map_fitted.pdb|A|1,1140   |0|20|0| 
|Rpb1 |Rpb1_2|1WCM_new.fasta.txt|1WCM:A|1WCM_map_fitted.pdb|A|1141,1274|0|20|0| 
|Rpb1 |Rpb1_3|1WCM_new.fasta.txt|1WCM:A|1WCM_map_fitted.pdb|A|1275,1455|0|20|0| 
|Rpb2 |Rpb2_1|1WCM_new.fasta.txt|1WCM:B|1WCM_map_fitted.pdb|B|1,1102   |0|20|0| 
|Rpb2 |Rpb2_2|1WCM_new.fasta.txt|1WCM:B|1WCM_map_fitted.pdb|B|1103,-1  |0|20|0| 
|Rpb3 |Rpb3  |1WCM_new.fasta.txt|1WCM:C|1WCM_map_fitted.pdb|C|all      |0|20|0| 
|Rpb4 |Rpb4  |1WCM_new.fasta.txt|1WCM:D|1WCM_map_fitted.pdb|D|all      |0|20|40| 
|Rpb5 |Rpb5  |1WCM_new.fasta.txt|1WCM:E|1WCM_map_fitted.pdb|E|all      |0|20|0| 
|Rpb6 |Rpb6  |1WCM_new.fasta.txt|1WCM:F|1WCM_map_fitted.pdb|F|all      |0|20|0| 
|Rpb7 |Rpb7  |1WCM_new.fasta.txt|1WCM:G|1WCM_map_fitted.pdb|G|all      |0|20|40| 
|Rpb8 |Rpb8  |1WCM_new.fasta.txt|1WCM:H|1WCM_map_fitted.pdb|H|all      |0|20|0| 
|Rpb9 |Rpb9  |1WCM_new.fasta.txt|1WCM:I|1WCM_map_fitted.pdb|I|all      |0|20|0| 
|Rpb10|Rpb10 |1WCM_new.fasta.txt|1WCM:J|1WCM_map_fitted.pdb|J|all      |0|20|0| 
|Rpb11|Rpb11 |1WCM_new.fasta.txt|1WCM:K|1WCM_map_fitted.pdb|K|all      |0|20|0| 
|Rpb12|Rpb12 |1WCM_new.fasta.txt|1WCM:L|1WCM_map_fitted.pdb|L|all      |0|20|0|



Evaluation

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

At this point we need to create our scoring function, by 
which the individual structural models will be scored 
based on the input data


A sum of individual restraints


Each restraint maps to one of our input experiments or 
other physical/statistical information



Sequence connectivity restraint

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

We know that residues that are adjacent in sequence will 
also be close in space, due to the peptide bond


We should enforce this in our modeling by adding simple 
harmonic restraints between beads


PMI handles this automatically based on the FASTA file


nothing needed in our script



Excluded volume restraint

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

We also know that one protein cannot occupy the same 
space as another


The excluded volume restraint is calculated at resolution 
20 (20 residues per bead)


Faster to evaluate, but more approximate


We’re maintaining a list of ‘output objects’, and this will 
be one of them


Statistics on such objects (e.g. whether the score is 
satisfied) will be collected during the modeling

 ev = IMP.pmi.restraints.stereochemistry.ExcludedVolumeSphere( 
                                          representation, resolution=20) 
 ev.add_to_model() 
 outputobjects.append(ev)



Crosslinking restraints

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Restrain residue pairs based on the crosslinks files


Residue-level information, so apply at resolution 1


Length of cross linker given here


The restraint is Bayesian with ψ and σ noise parameters


We’ll need to sample those parameters later at the 
same time as the xyz coordinates (sampleobjects)

xl1 = IMP.pmi.restraints.crosslinking.ISDCrossLinkMS(representation, 
                                   datadirectory+'polii_xlinks.csv', 
                                   length=21.0,             
                                   slope=0.01, 
                                   columnmapping=columnmap, 
                                   resolution=1.0,           
                                   label="Trnka", 
                                   csvfile=True) 

xl1.add_to_model()    
sampleobjects.append(xl1) 
outputobjects.append(xl1)



EM restraint

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

We’re using a density overlap function to compare the 
GMM approximation of our model (em_components) 
with that of the EM map itself (target_gmm_file)


scale_to_target_mass ensures the total masses 
of model and map are identical


slope: nudge model closer to map when far away


weight: heuristic, needed to calibrate the EM 
restraint with the other terms.

em_components = bm.get_density_hierarchies([t.domain_name for t in domains]) 
gemt = IMP.pmi.restraints.em.GaussianEMRestraint(em_components, 
                                                 target_gmm_file, 
                                                 scale_target_to_mass=True, 
                                                 slope=0.000001, 
                                                 weight=100.0) 
gemt.add_to_model() 
outputobjects.append(gemt)



Sampling

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

We’re going to use Monte Carlo to sample (not minimize) 
our system (generate many models that satisfy the data)


Thus, need to define a set of movers

Perturb the system 
(apply movers to all 
sampled objects)

Evaluate the score 
(restraints)

Reject the 
perturbation

Apply the 
perturbation

Acceptable score 
based on Metropolis 

criterion?

Yes No



Monte Carlo setup

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

 #-------------------------- 
 # Set MC Sampling Parameters 
 #-------------------------- 
 num_frames = 20000 
 num_mc_steps = 10 

 #-------------------------- 
 # Create movers 
 #-------------------------- 
  
 # rigid body movement params 
 rb_max_trans = 2.00 
 rb_max_rot = 0.04 
  
 # flexible bead movement 
 bead_max_trans = 3.00 
  
 rigid_bodies = [["Rpb4"], 
                 ["Rpb7"]] 
 super_rigid_bodies = [["Rpb4","Rpb7"]] 
 chain_of_super_rigid_bodies = [["Rpb4"], 
                                ["Rpb7"]]

Bead movers: simple 
3D translation, 
sampled linearly up to 
a given max value


Rigid body movers: 
3D translation and 
rotation


Also we define here 
how to move our rigid 
bodies


(Remember that we 
also ‘move’ non-
Cartesian parameters 
for our Bayesian 
restraints)



Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation



floppy bodies
(flexible beads)

rigid body

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

rigid_bodies defines the components that will be moved as rigid 
bodies (in this case, the parts of Rpb4 and Rpb7 for which we 
have X-ray structure). Unstructured regions will move as flexible 
beads.



floppy bodies
(flexible beads)

rigid body
super rigid body (srb)

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

super_rigid_bodies defines sets of 
rigid bodies and beads that will 
move together in an additional 
Monte Carlo move.



floppy bodies
(flexible beads)

rigid body
super rigid body (srb)

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

super_rigid_bodies defines sets of 
rigid bodies and beads that will 
move together in an additional 
Monte Carlo move.



floppy bodies
(flexible beads)

rigid body
super rigid body (srb)

chain of srbs

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

chain_of_super_rigid_bodies sets additional Monte Carlo movers 
along the connectivity chain of a subunit. It groups sequence-
connected rigid domains and/or beads into overlapping pairs 
and triplets. Each of these groups will be moved rigidly. This 
mover helps to sample more efficiently complex topologies, 
made of several rigid bodies, connected by flexible linkers.



floppy bodies
(flexible beads)

rigid body
super rigid body (srb)

chain of srbs

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

chain_of_super_rigid_bodies sets additional Monte Carlo movers 
along the connectivity chain of a subunit. It groups sequence-
connected rigid domains and/or beads into overlapping pairs 
and triplets. Each of these groups will be moved rigidly. This 
mover helps to sample more efficiently complex topologies, 
made of several rigid bodies, connected by flexible linkers.



floppy bodies
(flexible beads)

rigid body
super rigid body (srb)

chain of srbs

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

chain_of_super_rigid_bodies sets additional Monte Carlo movers 
along the connectivity chain of a subunit. It groups sequence-
connected rigid domains and/or beads into overlapping pairs 
and triplets. Each of these groups will be moved rigidly. This 
mover helps to sample more efficiently complex topologies, 
made of several rigid bodies, connected by flexible linkers.



Sampling

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

mc1=IMP.pmi.macros.ReplicaExchange0(m, 
                               representation, 
                               monte_carlo_sample_objects=sampleobjects, 
                               output_objects=outputobjects, 
                               crosslink_restraints=[xl1,xl2], 
                               monte_carlo_temperature=1.0, 
                               simulated_annealing=True, 
                               simulated_annealing_minimum_temperature=1.0, 
                               simulated_annealing_maximum_temperature=2.5, 
                               simulated_annealing_minimum_temperature_nframes=200, 
                               simulated_annealing_maximum_temperature_nframes=20, 
                               replica_exchange_minimum_temperature=1.0, 
                               replica_exchange_maximum_temperature=2.5, 
                               number_of_best_scoring_models=100, 
                               monte_carlo_steps=num_mc_steps, 
                               number_of_frames=num_frames, 
                               global_output_directory="output")

Finally, we run the Monte Carlo sampling itself


Technically this is replica exchange but with only one 
replica (we’re not running in parallel with MPI)



Running the script

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

python	modeling.py		
autobuild_model:	constructing	Rpb1	from	pdb	../data/./1WCM_map_fitted.pdb	and	chain	A	
autobuild_model:	constructing	fragment	(1,	1)	as	a	bead	
autobuild_model:	constructing	fragment	(2,	186)	from	pdb	
autobuild_model:	constructing	fragment	(187,	194)	as	a	bead	
autobuild_model:	constructing	fragment	(195,	1081)	from	pdb	
autobuild_model:	constructing	fragment	(1082,	1091)	as	a	bead	
autobuild_model:	constructing	fragment	(1092,	1140)	from	pdb	
autobuild_model:	constructing	Rpb1	from	pdb	../data/./1WCM_map_fitted.pdb	and	chain	A	
autobuild_model:	constructing	fragment	(1141,	1176)	from	pdb	
autobuild_model:	constructing	fragment	(1177,	1186)	as	a	bead	
autobuild_model:	constructing	fragment	(1187,	1243)	from	pdb	
autobuild_model:	constructing	fragment	(1244,	1253)	as	a	bead	

Adding	sequence	connectivity	restraint	between	Rpb4_1-3_bead		and		Rpb4_4_13_pdb	of	distance	14.4	
Adding	sequence	connectivity	restraint	between	Rpb4_74_76_pdb		and		Rpb4_77-96_bead	of	distance	14.4	
Adding	sequence	connectivity	restraint	between	Rpb4_77-96_bead		and		Rpb4_97-116_bead	of	distance	14.4	
Adding	sequence	connectivity	restraint	between	Rpb4_97-116_bead		and		Rpb4_117_bead	of	distance	14.4	

generating	a	new	crosslink	restraint	
--------------	
ISDCrossLinkMS:	generating	cross-link	restraint	between	
ISDCrossLinkMS:	residue	358	of	chain	Rpb2	and	residue	246	of	chain	Rpb2	
ISDCrossLinkMS:	with	sigma1	1.000000	sigma2	1.000000	psi	0.05	
ISDCrossLinkMS:	between	particles	Rpb2_358_pdb	and	Rpb2_246_pdb	
==========================================	

...

...

---	frame	1	score	4814598.44759		
---	writing	coordinates	
---	frame	2	score	3527090.92513		
---	writing	coordinates	
---	frame	3	score	2662180.99705		
---	writing	coordinates	
---	frame	4	score	2021182.74211		
---	writing	coordinates	

...



Output data

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Initial structure (RMF format)

PDB of the best scoring models 
(constantly updated)

the trajectory (RMF format)

a stat file useful for replica exchange

a stat file containing all 
useful information on outputobjects

Note that PDB is not well suited for non-atomic structures


IMP uses its own format (RMF) for coarse-grained structures


PDB’s next generation file format (mmCIF) will natively support 
these structures



Analysis

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

In the analysis stage we cluster (group by similarity) the sampled 
models to determine high-probability configurations. Comparing 
clusters may indicate that there are multiple acceptable 
configurations given the data.


Cluster Precision: Determining the within-group precision and 
between-group similarity via RMSD


Cluster Accuracy: Fit of the calculated clusters to the true 
(known) solution


Sampling Exhaustiveness: Qualitative and quantitative 
measurement of sampling completeness



Clustering

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

A simple clustering protocol is shown in 
rnapolii/analysis/clustering.py  

Simply run with 
python clustering.py --test


k-means clustering after discarding bad-scoring models using 
all-against-all comparisons of Rpb4 and Rpb7 positions


 num_clusters = 1                      # how many clusters to create 
 num_top_models = 5                    # total number of best models to analyze 
 merge_directories = ["../modeling/"]  # directories to analyze 
 prefiltervalue = 2900.0               # prefilter by score

Also generates localization densities - maps showing the 
probability of finding each protein at each point in space - that 
give a good idea of the “spread” of all models in the cluster



Clustering output

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Outputs won’t look great, since we built only 50 models (many of 
which were discarded by prefiltering)


Outputs shown here are from a much longer run (overnight) with 
2 clusters requested


Typically cluster representatives and localization densities are 
reported in publications



Clustering output

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Distance matrix (dist_matrix.pdf) and dendrogram of the models 
after being grouped into clusters. The matrix should show the 
requested number of clusters with much lower within-cluster 
than between-cluster distance. If this is not the case, then 
perhaps too many clusters were chosen.



Clustering output

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Localization densities (*.mrc files)


The localizations are quite narrow and close to native

Rpb4 density

Rpb7 density

Native structure
of other subunits

EM density map,
as mesh



Other analysis

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Cluster precision (precision_rmsf.py)


shows spread of each cluster


Accuracy evaluation (accuracy.py)


compare against known structure


Sampling exhaustiveness: how can we be sure we’ve done 
enough sampling?


a variety of methods exist, not covered here today


for example, two independent runs should sample from the 
same distribution - can test statistically, or by comparing 
clusters


can also model leaving out some of the data (jackknife)


validate by comparison with data not used in the modeling


emergence of patterns not expected by chance



Iteration

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Once we’re satisfied that our sampling is complete, we can use 
the output to suggest new experiments


For example


a high value for a subunit precision suggests we need more 
intramolecular data (such as crosslinks)


clusters where the configuration of certain subunits is 
ambiguous suggests the need for more protein-protein 
interaction data involving those subunits


e.g. in this case crosslinks were sufficient to get Rpb4 and 
Rpb7 the ‘right way round’ in the stalk, but the EM map 
alone would likely not be



Conclusion

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

https://integrativemodeling.org/ 

D. Russel, K. Lasker, B. Webb, J. Velazquez-Muriel, E. Tjioe, D. Schneidman, 
F. Alber, B. Peterson, A. Sali, PLoS Biol, 2012. 
R. Pellarin, M. Bonomi, B. Raveh, S. Calhoun, C. Greenberg, G.Dong.

Integrative modeling provides structural models where 
individual experimental methods fail


The Integrative Modeling Platform (IMP) is a toolbox for 
solving integrative modeling problems


Generate multi-scale (also multi-state, time ordered) 
ensembles of models consistent with multiple sources 
of information


https://integrativemodeling.org/

